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Abstract

This paper examines how behavioral biases due to salient events can shape the government
provision of public goods. We develop a theory in which competing communities lobby a gov-
ernment agency for allocations of a local public good. When one community’s demand is biased
due to the occurrence of a salient event, an inefficient allocation results. Our empirical applica-
tion tests this theory using salient wildfire events and implementation of government projects
to reduce wildfire risk. Although the occurrence of wildfire removes hazardous fuels and thus
reduces risk to nearby communities, it may nonetheless increase community demands for fuels
management projects due to biases induced by the salient wildfire event. We find evidence
that communities experiencing recent nearby fires are subsequently more likely to receive fuels
management projects, and use robustness checks to rule out competing explanations for this
result. Our framework may also offer insights into government responses to terrorism, natural
disasters, disease outbreaks, and environmental catastrophes.
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1 Introduction

There are many reasons that governments may fail to provide the socially optimal amount of public

goods, including rent seeking (Gradstein, 1993), tax competition (Bucovetsky et al., 1998; Janeba

and Wilson, 2011), political decision-making (Romer and Rosenthal, 1979; Barseghyan and Coate,

2014), and overlapping market areas (Hochman et al., 1995), among others. This paper examines

another obstacle to efficient provision: behavioral biases that can distort the public’s demand

for government-provided goods. In our framework, communities compete for a public good by

lobbying the government. If the perceived value of the good is biased away from its true value,

a community may lobby for and receive an inefficient level of the public good. Further, due to

behavioral biases the perceived value of a public good can increase even when the benefits from

the good have decreased. Thus, provision of the public good can increase even though the efficient

quantity declined.

We consider the case in which demands for public goods are distorted by salient events.1 Due

to their emotional interest, concreteness, or temporal, spatial, and sensory proximity and visibility,

salient events shape the ease with which information is brought to mind, which can influence or

bias judgments (Taylor and Thompson, 1982; Nisbett and Ross, 1980; Tversky and Kahneman,

1973; Kahneman, 2003).2 Empirical evidence from economics suggests that behavioral biases can

affect human decision-making in the wake of salient events. For example, firm managers respond

to local hurricanes by increasing corporate cash holdings (Dessaint and Matray, 2017) and house

prices decrease following recent nearby floods or fires, especially if a burn scar from a fire is in the

1Here we use “salient” in its plain language meaning. In a later section, we more precisely document the many
behavioral biases and heuristics that can arise from salient events.

2Some papers have defined salience more narrowly. For example, the definition Chetty et al. (2009) adopt focuses
on visibility of information. Bordalo et al. (2012) define salient choices within a lottery to be those with unusually
high or low pay-offs, which draw a decision-maker’s attention. Our definition encompasses these definitions, and is
consistent with the way the word “salience” is used within much of the related empirical literature (e.g., Dessaint
and Matray, 2017; McCoy and Walsh, 2018; Bakkensen et al., Forthcoming) and with its use colloquially.
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house’s line of sight (Bin and Landry, 2013; McCoy and Walsh, 2018).

In contrast to prior studies of the effect of behavioral biases on private good consumption, our

main contribution is to show that behavioral biases can affect the provision of public goods. We start

with a simple theory of public good provision with lobbying. In our model, the government allocates

a local public good to two communities to maximize net benefits. Because the public does not bear

the costs of the good, they have an incentive to lobby for more than the efficient amount. The

government trades off the benefits from providing more of the public good against the opportunity

costs and a penalty for not meeting the community’s demand. An upward-biased perception of

the good’s value within a community can cause it to lobby more and receive an inefficient amount

of the public good. Salient events can cause such biases, even when they also decrease the true

value of the public good. When the value of a public good declines, the government will reduce

the allocated quantity of the good and—absent behavioral biases—the public will reduce lobbying.

However, if community members use heuristics like the availability or representativeness heuristic,

their perceived value for the public good can go up, leading them to increase their lobbying effort.

The result is that government provision of the public good can increase even when its value has

declined.

We estimate the effects of salient events on public good provision by examining the distribution

of government projects to reduce wildfire hazard.3 These projects involve the removal of vegetation

from public lands in order to reduce the severity of wildfires when they occur (Stephens et al., 2009).

We analyze whether fuels management projects are more likely to be placed near communities that

have recently experienced a salient wildfire, proxied for by distance to the community. Both fuels

treatments and wildfires reduce the severity of future fires by removing fuels from the landscape

(Collins et al., 2009). Thus, a close fire reduces the expected value of fuels management projects

3Fire hazard refers to the conditions on the landscape that affect fire behavior, including vegetation type and terrain.
Fire risk is the probability that natural resources, structures, etc. are destroyed by wildfire.
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in the same area. Yet our theory suggests that even where a recent fire has reduced risks to a

community, it may lead the public to overestimate the benefits of fuels management and lobby

for more fuels projects.4 As a result, public agencies may inefficiently allocate fuels management

projects to communities for which recent wildfire has already reduced risk.

We identify the effects of behavioral biases with a rich panel data set on all fuels manage-

ment projects on federal forest lands in the western U.S. between 2003 and 2011. The dependent

variable in our empirical model is a binary indicator for whether a fuels management project

was implemented on a given plot of land (cell i) in year t. We focus on cells that are close to

wildland-adjacent communities, which are potentially vulnerable to damages from wildfire. We

think of wildland-adjacent communities as being “treated” by a salient event when a wildfire oc-

curs close-by and we test how treatment changes the probability of fuels management near the

treated community. We measure effects in the year of the fire and for several years following the

fire. Our specification includes grid cell fixed effects to control for time-invariant determinants of

fuels management decisions, such as fire hazard and proximity to assets at risk, and year-by-region

fixed effects to control for time-trending unobservables that may be correlated with fire hazard,

such as changes in fuel moisture content.

We find strong evidence that close fires increase the likelihood that fuels management projects

will be placed near treated wildland-adjacent communities. The effect is relatively large but quickly

attenuates, as would be expected if it is driven by recency or other short-lived behavioral biases.

Our main results are robust to different definitions of “close” fires and projects, alternative ways

of clustering standard errors, corrections for serial correlation, inclusion of placebo one- and two-

year leads, and changes in the sample. An alternative explanation for our empirical results is that

government agencies use the occurrence of wildfires to learn about risks from future fires, as in

4In our empirical application, we are unable to explicitly measure the change in risk due to a recent, nearby fire.
Because a wildfire reduces flammable fuels, fire risk in the area near a wildfire can decline or remain the same, but
cannot increase following a fire.

4



the application to flooding by Gallagher (2014). To rule out this explanation, our specification

includes year-by-region effects for relatively small geographic regions. We expect that any time-

varying correlates of fire hazard that might be revealed by the occurrence of a fire vary at broader

geographic scales and will thus be captured by these time-varying effects. Further, we show that

the effect of a nearby fire on the likelihood of a fuels management project does not vary with

vegetation condition, as would be expected if the fire informed managers about the risk of future

fires. We provide further support for the behavioral bias mechanism by showing that effects of

close wildfires are magnified near communities with greater population and more housing units.

Consistent with our theory, these tests suggest that close wildfires affect the residents of wildland-

adjacent communities.

In the next section, we present the theoretical model. Section 3 illustrates how salient events

can lead to behavioral biases that shape the benefits from a public good. Section 4 describes the

context and the data used in the empirical application, and section 5 presents the main econo-

metric specification and results, followed by a series of sensitivity analyses, robustness checks, and

evaluation of learning as an alternative to behavioral biases. Conclusions are in the final section.

2 Theory

This section presents a model of public good provision with lobbying. The decision-maker is a

government agency that provides a local public good to two identical communities i = {1, 2}. The

cost of allocating Qi units of the good to each community is C(Q1, Q2) = 1
2η(Q1+Q2)

2 and benefits

from the public good are B(Qi) = α0Qi − 1
2α1Q

2
i . The parameter α0 plays an important role in

the model. We allow for residents of the communities to have a perceived value of the parameter,

α̃0, that may differ from its true value due to behavioral biases. This raises or lowers perceived

marginal benefits, B̃′(Qi) = α̃0 − α1Qi, for all values of Qi. In contrast, the agency forms correct
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beliefs about α0 and seeks to maximize the net benefits of providing the public good subject to a

budget M . We assume that in the absence of lobbying, the agency allocates an efficient amount of

the public good to each community, denoted Q∗0, and that the total budget for the agency is set

accordingly at M = 1
2η(2Q∗0)

2.5

Even if the agency allocates the efficient amount of the public good, members of a community

have an incentive to lobby for more of it because they do not bear the costs of its provision.

We assume the communities and the agency play separate leader-follower games in which each

community lobbies for the good, taking into account the best response function of the agency.6

Each community’s lobbying cost is CLi(QLi) = 1
2λQ

2
Li, where QLi is the additional amount of the

good sought by the community beyond Q∗0. One can think of QLi as being proportional to lobbying

effort.7 Community i finds the optimal QLi by solving:

max
QLi

α̃0(Q
∗
0 +QAi(QLi))−

1

2
α1(Q

∗
0 +QAi(QLi))

2 − 1

2
λQ2

Li (1)

In Equation (1), QAi(QLi) is community i’s conjecture about the additional amount of the public

good it will obtain from seeking QLi. The optimal lobbying effort, Q∗Li, is defined implicitly by:

(α̃0 − α1Q
∗
0 − α1QAi(Q

∗
Li))

dQAi
dQLi

− λQ∗Li = 0 (2)

Under lobbying, the agency incurs a cost of not meeting community i ’s demand, given by

1
2γ(Q∗Li − QAi)2. The agency is the follower in the model and so has Cournot conjectures (i.e.,

it assumes that its choice of QAi does not affect Q∗Li, or
dQ∗Li
dQAi

= 0). Under lobbying, the agency

5The efficient provision Q∗0 is the solution to maxQ1,Q2

∑
i(α0Qi− 1

2
α1Q

2
i )− 1

2
η(Q1+Q2)2, which yields Q∗0 = α0

(α1+2η)
.

6Our model has the same structure as a Stackelberg industry. We make the communities the leaders in the games so
that they conjecture that lobbying affects the provision of the public good.

7We express QLi in terms of units of the public good because it allows us to define the agency’s loss function, below,
in the same units.
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maximizes the net benefits of providing more of the good, solving:

max
QA1,QA2

2∑
i=1

[α0(Q
∗
0 +QAi)−

1

2
α1(Q

∗
0 +QAi)

2 − 1

2
γ(Q∗Li −QAi)2]−

1

2
η(2Q∗0 +QA1 +QA2)

2

subject to
1

2
η(2Q∗0 +QA1 +QA2)

2 = M, −Q∗0 ≤ QA1, QA2 ≤ Q∗0

(3)

The interior solution8 to (3) satisfies:

α0 − α1(Q
∗
0 +Q∗A1)−γ(Q∗L1 −Q∗A1) = 0

α0 − α1(Q
∗
0 +Q∗A2)−γ(Q∗L2 −Q∗A2) = 0

Q∗A1+Q
∗
A2 = 0

(4)

The equations in (4) can be solved for the additional amounts of the public good provided to the

communities:

Q∗A1 =
γ

2(γ − α1)
(Q∗L1 −Q∗L2)

Q∗A2 =
γ

2(γ − α1)
(Q∗L2 −Q∗L1)

(5)

We assume that γ−α1 > 0 so that, all else constant, a community’s lobbying effort increases public

good provision. The equations in (5) imply that if the communities lobby the same amount, then

each community receives the same quantity of the public good.

Using (5), we can define the conjectures made by the two communities. If each community

takes the other community’s lobbying effort as given (i.e., has Cournot conjectures), the conjecture

in both communities is dQAi
dQLi

= γ
2(γ−α1)

. Using this result with Equation (2), we obtain the amount

8The constraint on QA1 and QA2 ensures that negative quantities of the public good cannot be allocated.
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of lobbying undertaken in each community as:

Q∗L1 = K0(α̃0 − α1Q
∗
0) +K1Q

∗
L2

Q∗L2 = K0(α̃0 − α1Q
∗
0) +K1Q

∗
L1

(6)

where K0 = 4(γ−α1)2

4λ(γ−α1)2+α1γ2
> 0 and K1 = α1γ2

4λ(γ−α1)2+α1γ2
> 0. Because K1 < 1, there is a stable

Cournot equilibrium at Q∗L1 = Q∗L2 = K0(α̃0 − α1Q
∗
0)

1+K1

1−K2
1
.9 The equilibrium is symmetric when

the two communities have the same beliefs about the benefits from the public good (i.e., they have

the same perceived value of α̃0). In this case, the communities lobby the same amount and neither

obtains more of the public good; rather, each community lobbies to prevent the other community

from eroding their benefits. Moreover, when communities have true beliefs (α̃0 = α0), the efficient

amount of the public good is allocated.10

In the empirical application, wildfires occur only near some communities and, thus, only a subset

of them experience changes in the benefits of fuels management projects. We use the theoretical

model to understand how public good provision changes when the benefits of the good change

for community 1 but remain constant for community 2. Further, we consider separately changes

in the benefit perceived by community 1 and the changes in the actual benefit to community 1

as understood by the agency. We evaluate the change in the total allocation to community 1,

Q∗01 +Q∗A1, due to changes in α0 for community 1 (dα̃01 and dα01):

d(Q∗01 +Q∗A1) =
∂Q∗A1
∂α̃01

dα̃01 +

(
∂Q∗01
∂α01

+
∂Q∗A1
∂α01

)
dα01 (7)

The budget constraint in Equation (3) implies an opposite change in the allocation to community

9The equilibrium lobbying amounts Q∗L1 and Q∗L2 are positive as long as α̃0 − α1Q
∗
0 > 0. This condition holds for

sufficiently large values of α̃0, including all α̃0 ≥ α0.
10The efficient amount of the public good is also allocated when the two communities have incorrect beliefs, as long

as those beliefs are the same.
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2: −d(Q∗01 +Q∗A1). We highlight two results (see the Appendix for further results and derivations).

Result 1: If dα01 ≤ 0, then there exists dα̃01 > 0 such that d(Q∗01 +Q∗A1) > 0.

The first result says that even if the actual benefit to community 1 declines or stays the same, the

total allocation of the public good to community 1 can increase if there is a sufficient increase in

perceived value to the community. In this case, the efficient allocation to community 1, Q∗01, is

lower but the residents increase their lobbying by more than enough to offset this decline. This

allocation is clearly inefficient since the total allocation to community 1 should decrease when the

actual benefits from the public good decline.

Result 2: If dα̃01 > 0 and dα01 > 0, then d(Q∗01 +Q∗A1) > 0.

The second result says that the total allocation to community 1 can also increase when there is a

rise in the actual and perceived values of the public good. For example, if there is new information

about the benefits of the public good and the agency and the community residents update the

values of α̃01 and α01, the total allocation to community 1 will increase.

Results 1 and 2 provide alternative reasons a community might receive more of a public good.

In the empirical application, we distinguish between these competing explanations for observed

increases in public good provision.

3 Behavioral biases in response to salient events

Within communities that have experienced a salient focusing event, heuristics can bias perceptions

about the benefits of a public good and lead to changes in lobbying. Heuristics are mental “short-

cuts,” which provide fast and effortless judgments but can result in systematic biases (Kahneman,

2011). Under a variety of the common heuristics identified in scholarly work, salient events can

lead to biases. As noted above, we describe events as salient in accordance with its plain language
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meaning of “standing out conspicuously; prominent” (Salient [Def. 1], 2018). For the application to

public goods considered in this paper, the use of heuristics after the occurrence of salient events can

lead to biased beliefs about the benefit of the public good. In terms of the theoretical model in the

previous section, if the event leads to an upward bias in α01, it can result in an increase in lobbying

by the community and an inefficient provision of the public good (Result 1). In the remainder of

this section, we describe three heuristics—availability, affect, and representativeness—under which

salient events can lead to biased perceptions about the value of a public good.

Under the availability heuristic, people base judgments on information that is easiest to bring

to mind or most “available.” Information may be more available because it is less costly to obtain

(e.g., Finkelstein, 2009; Chetty et al., 2009; Sexton, 2015), it is distinct and tends to stand out

(Bordalo et al., 2012, 2013), it is more familiar (Lichtenstein et al., 1978), or it is related to recent

experiences (Tversky and Kahneman, 1974). When a salient event occurs, it can bias perceptions of

the public good’s value upwards by drawing the community’s attention to the benefits that would

come from mitigating the consequences of the salient event. As a result, communities affected by

the event may increase lobbying for the public good and receive more of it. This same prediction

could come about if people use the affect heuristic (Loewenstein et al., 2001; Loewenstein and

Lerner, 2003), in which their assessments are influenced by their emotional responses. If strong

negative feelings are induced by a salient event, this could bias perceptions of benefits of a public

good intended to mitigate the consequences of future such events upward and lead to increased

lobbying and increased public goods provision.

Similarly, the representativeness heuristic can lead to overestimates of the public good’s value if

it causes individuals to misunderstand the stochastic process underlying the relevant hazard. Under

the representativeness heuristic, people make judgments about probability based on how similar a

sample is to some distribution. When individuals observe a sample containing a rare event or an
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unlikely sequence of events, the representativeness heuristic can lead them to change their beliefs

about the underlying distribution, even when the sample is small (Tversky and Kahneman, 1974).

The observation of an event, therefore, can cause individuals’ beliefs to change and lead them to

believe another event is forthcoming (e.g. Guryan and Kearney, 2008).11 In our application, the

observable implications of such a bias are identical to those caused by the availability or affect

heuristics—communities that have experienced a salient event may have upwardly biased percep-

tions regarding the expected value of the public good, in this case because they overestimate the

likelihood of another such event. If so, they may lobby government and be allocated more resources.

Within our empirical application, this is possible even when objective benefits of the public good

have declined. Since each of these behavioral biases results in the same observable implications,

our empirical application does not distinguish between them.

4 Empirical application

4.1 Managing wildfire in the western U.S.

Federal agencies manage 250 million hectares of wildlands in the U.S., and 88% of public lands

in the contiguous U.S. are in the western U.S. In recent decades, the threat of wildfire has in-

creased in this region (Dennison et al., 2014; Westerling, 2016) owing to factors including climate

change (Moritz et al., 2012; Westerling et al., 2006; Yue et al., 2013), the expansion of wildland-

adjacent communities (Radeloff et al., 2018), and historical fire exclusion (Arno et al., 1995; Keane

et al., 2002; Naficy et al., 2010). For much of the twentieth century, the USFS and other public

agencies took aggressive steps to exclude fire from western forests through fire suppression. This

led to a build-up of “ladder fuels,” which carry fire from a forest’s understory to its canopy and

11In principle, the representativeness heuristic can also lead to the opposite bias: if individuals observe an event but
their belief in the underlying distribution persists, they may begin to believe the event is unlikely to recur, since
this will cause the observed sequence to better resemble the known distribution.
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can contribute to larger and more severe wildfires in some dry western forests. Due to increases in

wildfire hazard, federal spending on wildfire management has risen in recent decades. Federal agen-

cies spend approximately $3 billion annually controlling wildfire (Gorte, 2013), and approximately

one-half of the USFS budget is now dedicated to fire management (Thompson et al., 2015).

Of this wildfire spending, roughly $0.5 billion is allocated to fuels management projects, which

involve removing fuels from the landscape through mechanical thinning and controlled burns (Agee

and Skinner, 2005). The goal of these projects is to reduce the severity of wildfires (Stephens et al.,

2009) by restoring the forest to conditions under which high intensity fires are less likely. Removing

understory vegetation can reduce the likelihood that trees will burn in high-severity canopy fires

(Agee and Skinner, 2005). Fuels reduction projects within dry forests of the western U.S. are

effective in reducing fire intensity, especially when prescribed fire and thinning are used together

(Kalies and Kent, 2016). There is also evidence that strategically-placed fuels projects (Schoennagel

et al., 2017) can help prevent damage to homes and structures by reducing fire severity (Kennedy

and Johnson, 2014) and allowing firefighters to defend homes (Bostwick et al., 2011).

Communities that have recently experienced a close wildfire are likely to face lower risks of

property damage from subsequent wildfires in the short term because fire is a contagion process

whose spread depends on fuel availability. Fuels management projects and wildfires can both serve

as barriers to the spread of subsequent fires and reduce their severity (Collins et al., 2009; Parks

et al., 2015). Despite this reduced risk, these same communities may be subject to behavioral

biases that lead them to overestimate the benefits of fuels management projects. Previous research

indicates that communities are more attentive to wildfire risk following nearby wildfire incidents

(McCoy and Walsh, 2018; Mockrin et al., 2018). Therefore, there is potential in our application

that community lobbying will increase after a nearby fire despite decreases in objective wildfire

risk (see Result 1). We use data from across the western U.S. to evaluate whether communities
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that have experienced a recent, close wildfire are subsequently allocated more fuels management

projects, even as this may be suboptimal given the reduced risk.

4.2 Data

To test the effects of responses to salient events on the provision of local public goods, we combine

an extensive panel data set of the locations of fuels management projects on public lands with

spatial data on wildfire perimeters and locations of wildland-adjacent communities. Due to the

importance of wildfire management in the western U.S., we focus our attention on lands in 15

western states12 managed by the U.S. Forest Service (USFS), Bureau of Land Management (BLM),

and National Park Service (NPS). We identified these public lands using BLM and NPS boundaries

(Bureau of Land Management, 2014) and administrative National Forest boundaries for USFS lands.

Combined, our study area encompasses approximately 1.5 million square kilometers of federal land,

of which the USFS and BLM manage roughly equal shares (47%), with the remaining 6% managed

by the NPS. We divided this area into a grid of 1 km × 1 km cells, since this is the approximate

size of the average fuels management project in our data. These 1 square kilometer cells are the

units of analysis.

The fuels management data come from the National Fire Plan Operations and Reporting System

(NFPORS). The NFPORS database records the point location (latitude and longitude), dates, and

area of all fuels reduction projects for the USFS and the Department of Interior (including BLM

and NPS) lands in the years 2003-2011. Projects are classified as controlled burns, mechanical

thinning, preparation for treatment, and other. Controlled burns and mechanical thinning account

for 94% of the observed projects in our data. Because NFPORS does not provide the boundaries of

fuels management projects, we used the reported point location and area to estimate boundaries.

12These states are Arizona, California, Colorado, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, North
Dakota, Oregon, South Dakota, Utah, Washington, and Wyoming.
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Using ArcGIS, we created a polygon layer in which fuels management projects were represented by

circles of the reported area, centered on the reported point location. A grid cell was designated as

having received fuels reduction in a given year if the grid cell’s centroid was inside of an imputed

project boundary in that year.

Although the majority of land under federal management is forested (52%), there are significant

areas in shrubs (39%) and grasslands (7%).13 Our data reveal that fuels reduction projects are

implemented on non-forest lands, but at a much lower rate than on forest lands. As shown in the

first panel, second column of Table 1, for the whole sample the rate of fuels reduction projects

in evergreen or mixed forests is 2.5%. The rate is lower (1.1%) in deciduous forests, which are

more likely to occur in relatively wet areas where wildfire is less prevalent. In deciduous forests,

prescribed fire is typically used to restore native tree species rather than for hazard reduction

(Matlack, 2013; Brose et al., 2001). Fuels management is uncommon on non-forest lands such as

shrubs and grasslands (the rate is about 0.5% for the whole sample) because they have much lower

volumes of flammable vegetation and, therefore, are a lower risk to neighboring communities. Since

fuels reduction activities are concentrated in evergreen and mixed forests and the relationships

between fire events, fuels reduction activities, and future fire risk are much less clear in deciduous

forests and other land cover types (Keeley et al., 2009; Moritz et al., 2014), we focus our attention

hereafter on forest (evergreen and mixed forests) lands.14 For the forest-only sample, the USFS is

the dominant land management agency (83% of all grid cells), followed by the BLM (13%) and the

NPS (4%).

We define wildland-adjacent communities as wildland urban interface (WUI) Census blocks,

13We obtained these estimates by overlaying the National Land Cover Data for 2006 on the federal agency data
described above.

14In results not reported here, we find evidence of government responsiveness to behavioral biases for deciduous
forests and non-forest lands, although the estimated effects are much smaller and significant only in the year of
the fire. Further, the main results presented below are qualitatively similar when we include deciduous forests and
non-forested lands in the sample.
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which encompass both interface, where developed residential areas directly abut large areas of wild-

land vegetation, and intermix, where residences are dispersed among wildland vegetation (USDA

and DOI, 2001). Wildland urban interface data come from Radeloff et al. (2005), who mapped U.S.

WUI areas using landcover and housing density data. For our purposes, we consider as WUI any

U.S. Census block within our study region that Radeloff et al. (2005) classified as low, medium, or

high density interface or intermix in 2000. Descriptive statistics for all WUI blocks in the study

region are provided in the second column of Table 2.

Fire data come from the interdepartmental Monitoring Trends in Burn Severity (MTBS) project

(Eidenshink et al., 2007). In the western U.S., MTBS uses Landsat satellite imagery to map fire

perimeters for fires larger than 1000 acres (approximately 4 km2). This focus on larger fires makes

sense for this study, since we expect larger fires to be most salient to the public.

Our analysis relies on two distance measures: the distance from each forested grid cell to its

nearest WUI blocks to associate forested areas that may be subject to management with com-

munities and the distance from each WUI block to the nearest fire to identify salient fires. For

each cell, we calculated the straight-line distance to up to 500 of the nearest WUI blocks within a

threshold distance of 10 km. Among the nearly 1.5 million grid cells in our sample, only 3,147 were

matched with the maximum number of WUI blocks. Therefore, limiting the sample to the closest

500 WUI blocks is unlikely to influence our results. In a similar way, we measured the straight-line

distance from each WUI block to the nearest fire in each year. Figure 1 provides the kernel density

functions for the two distance measures. For forested cells, distances of less than 13 km to the

nearest WUI block are the most common. The density for distances between WUI blocks and the

nearest fire is roughly uniform, although the likelihood of fires within 15 km or more than 40 km

away is somewhat lower.

Our empirical strategy requires dropping grid cells that are not close to at least one WUI
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block, since we expect the placement of fuels reduction activities far from human settlement to be

determined by factors other than the behavioral biases due to salient wildfires (e.g., protection of

timber resources). In our main set of results, the sample consists only of grid cells closer than 5

km from the nearest WUI block. As described below, however, we test the sensitivity of our results

to different definitions of closeness to WUI blocks. Compared to the whole sample of grid cells,

the rate of fuels reduction projects increases somewhat when we consider only grid cells within 5

km of a WUI block, but the rate is still highest on forest lands (Table 1, panel II). Restricting our

attention to grid cells within 5 km of a WUI reduces the number of WUI blocks by 77%, but has

little effect on average community characteristics (Table 2).

To test whether learning can explain our results, we use a measure of vegetation condition

from the Landfire project.15 The Vegetation Condition Class (VCC) is a cardinal measure of the

degree to which the current vegetation departs from simulated historical vegetation conditions.

For example, the largest value of VCC corresponds to “high departure”, which is indicative of a

landscape on which fuels have built up due to long-term fire suppression. A fine-scale measure of

the VCC is available for 2001, 2008, and 2012, which we match to the grid cell data described above.

Further tests are conducted with measures of population and number of housing units (Table 2).

Because access to block-level U.S. Census data is restricted, these variables are measured at the

Census tract level using data from the 2000 Census.

15Landfire is a partnership of U.S. land management agencies to provide geospatial data on vegetation, wildland fuel,
and fire regimes. See https://www.landfire.gov/about.php#planning (accessed August 31, 2017).
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5 Econometric model & results

5.1 Overview

The essence of our empirical approach is to determine whether fuels management projects are

more likely to occur on federal lands that are close to WUI communities that have experienced

nearby wildfires. We expect WUI residents to be more affected by biases if they can observe smoke

plumes, fire-fighting efforts, and possibly the fire itself. Such highly localized effects of wildfires are

supported by findings in McCoy and Walsh (2018) that fires influence housing prices only if they

are within 5 km.

We motivate our empirical approach with Figure 2, which shows a small portion of our study

area in the state of Oregon. Light shaded areas depict lands managed by federal agencies, and

dark shaded areas are Census blocks classified as WUI. The hatched area is the burn scar from

a fire that occurred in 2011. We think of WUI communities as being “treated” by close fires in

the sense that the salient fire can raise the expected value of fuels treatments for residents of the

community. Our definition of close is varied in the empirical analysis, but for this illustration it

is defined as 5 km. As such, WUI community A is treated because it is within 5 km of the fire,

but WUI communities farther than 5 km from the fire are untreated. We then consider whether

there is a higher probability of fuels reduction projects occurring in close proximity to the treated

WUI community. We identify all grid cells on federal lands that are within 5 km of some portion

of a WUI community. Grid cells 1 and 2 meet this criterion (the radius of the solid circle is 5

km). However, only grid cell 1 is close (within 5 km) to at least one treated WUI community (A),

whereas grid cell 2 is close to untreated communities. We test whether grid cells that are close to

WUI communities that are close to fires (e.g., cell 1) are more likely to receive a fuels management

project than grid cells that are close to WUI communities that have not experienced a nearby fire
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(e.g., cell 2).

As illustrated in Figure 2, cells near treated WUI communities are themselves not necessarily

close to or within areas that recently burned. This is by design, since we hypothesize that be-

havioral biases will increase demand for fuels reduction projects throughout the area surrounding

a community that has experienced a recent wildfire event. An implication is that fuels projects

motivated by the occurrence of salient wildfires may be relatively distant from the sites of recent

wildfires. Because they decrease the volume of flammable fuels, fires reduce the marginal benefits

from subsequent fuels management projects located nearby or, at a sufficient distance from the

fire, leave benefits unchanged. Therefore, while we do not measure explicitly the efficiency conse-

quences of bias-driven management, the principles of fire science imply that such management can

only (weakly) diminish the benefits of fuels projects.

In place of distance to an event, some recent studies have used more direct measures of in-

formation transmission as indicators of salient events. Gallagher (2014) uses the number of local

television stories on floods as a measure of media exposure that indicates salience. For our ap-

plication, however, media markets are large relative to the scale at which we expect the effects of

wildfires to operate. In the western U.S., local television media markets are comprised of many

counties and, in some cases, large portions of states.16 Furthermore, to identify effects of media

coverage we would need to omit from our model year-by-region fixed effects that are defined at much

smaller scales than media markets. A second possible way to operationalize whether a fire is salient

is by whether the fire is visible, since McCoy and Walsh (2014) find that a wildfire has a larger

effect on housing prices if the burn scar is visible from a house. Measuring the visible features of a

wildfire is difficult in our case because we are interested in effects on communities of people rather

than single points in space. Communities are delineated with Census blocks, which are often large

16See http://www.nielsen.com/intl-campaigns/us/dma-maps.html (accessed August 31, 2017).
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in the low density WUI areas we study. Because of the limitations of media markets or visibility in

this context, we use distance as an indicator of whether a fire is salient. We present tests, below,

that strengthen our case for using distance to indicate the degree to which communities are likely

to be subject to behavioral biases due to the occurrence of a salient wildfire.

5.2 Main specification

As in recent applications of the difference-in-differences estimator (e.g. Conley and Taber, 2011;

Abrevaya and Hamermesh, 2012), we estimate our main specification using a linear probability

model. In a panel data setting, the advantage of the linear probability model is the ease of including

fixed effects. In our application, fixed effects play a critical role in controlling for unobserved

determinants of fuels reduction activities, such as underlying fire hazard and proximity to assets

at risk. An alternative is a binary probit or logit specification. However, including fixed effects

in these models gives rise to the incidental parameters problem that renders maximum likelihood

estimates inconsistent. The linear probability model is a good alternative considering that all of

our regressors are dummy variables and our goal is to estimate their effects at the mean of the data

(Wooldridge 2010).

The main specification of the linear probability model is:

yit =

0∑
`=−4

β`1{∃s ∈ Si : firedists,t+` ≤ c}+ γi + δtm(i) + εit (8)

where i, t, and s, index cells, years, and WUI blocks, respectively, and m(i) is a mapping from

cell i to an aggregate geographical region (e.g., a Census tract), indexed by m. The dependent

variable, yit, equals 1 if a fuels management project occurs on cell i in year t and is 0 otherwise.

Si = {s : wuidists ≤ d} where wuidists is the distance from cell i to WUI block s and d is a

threshold value. Thus, Si is the set of all WUI blocks within distance d of cell i. The salient
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wildfire indicator function 1{·} equals one when a fire occurs close to at least one of the WUI

blocks in the set Si. Specifically, firedists,t+` is defined as the distance to the fire closest to WUI

block s that occurs in year t + `. If that fire is within distance c of WUI block s and block s is

in the set Si, then the indicator function equals one. The parameters of the model are γi, β
`, and

δtm(i), and εit is a random disturbance term. The summation term in equation (8) allows each fire

to have a contemporaneous effect on the probability of fuels management projects (` = 0) and four

annual lagged effects (` = -1 to -4). We examined specifications with more lags, but did not find

any significant coefficients outside the range of effects in equation (8).

We identify the effects of salient wildfires based on within grid cell and within year-by-region

variation. We would expect decisions about fuels management projects to be influenced by such

factors as fire hazard, access, and administrative unit. We implicitly control for these time-invariant

factors with cell-level fixed effects γi.
17 Time-varying factors could include macroeconomic trends

affecting government budgets, fluctuations in weather, and changes in management objectives. We

control for these factors with year-by-region effects δtm(i) where regions are alternatively defined

as units (USFS national forests, BLM district offices, NPS national parks), districts (USFS ranger

districts, BLM field offices), counties, and Census tracts. Districts are less aggregated than units18

and Census tracts are less aggregated than counties. But these regions are sufficiently small areas

so that within-region variation in fire risk trends should be minimal, helping to rule out learning

as an alternative to behavioral biases.19 We also consider the degenerate case of a single region,

which amounts to including year effects.

We are concerned about the possibility of spatial autocorrelation, which can bias estimates

17With fixed effects included, cells that are never included in fuels management projects have no influence on the
model estimates.

18For NPS lands, there is no region less aggregated than a unit (National Park); therefore, year-by-district fixed
effects and year-by-unit fixed effects are equivalent on NPS lands.

19We discuss potential time-varying determinants of fire risk in more detail, below, when we evaluate learning as an
alternative explanation for our results.
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of standard errors. If, for example, fuels reductions span more than one grid cell, then the fuels

reduction status of neighboring grid cells may be correlated. To account for this possibility, we

cluster the residuals in two ways, first at the district level and next at the unit level. As a check of

robustness, we also estimated our main specifications with clustering at the level of Census tracts

and counties. Our choice of geographic unit on which to cluster does not substantively affect our

results.

The results for the main specification are reported in Table 3. All model versions include cell

fixed effects (γi) and consider pixels and wildfires within 5 km of WUI blocks (i.e., c = d = 5km).

The models vary according to the type of year-by-region fixed effects included. Model (1) includes

only year effects. We find the contemporaneous effect of a close wildfire on the probability of a fuels

reduction project to be 1.6 percentage points, an estimate that is significantly different from zero

at the 1% confidence level. We interpret the contemporaneous effect as an immediate response to a

wildfire.20 The effect is large relative to the 3.5% average annual rate of fuels reduction projects in

the evergreen and mixed forests in our sample (panel II in Table 1). We also find a significant effect

(p < 0.05) of a close fire that occurred one year previously, but only when we cluster the errors at

the district level. This effect is smaller, indicating that a fire last year raises the probability of a

fuels reduction project by 0.7 percentage points. Fires that occur two, three, and four years earlier

do not have significant effects.

The inclusion of year-by-region effects sharpens the results. In models (2) through (5), the

contemporaneous effect remains at approximately 1.6-1.8 percentage points, but now the one-year

lagged effect is significantly different from zero, whether clustering of standard errors is at the unit

or district level. The results indicate that a close fire one year ago increases the probability of

fuels management by 0.6 to 0.9 percentage points. In models (3), (4), and (5), longer lags do not

20Alternatively, fuels reduction projects could be accurately placed in anticipation of wildfires. We examine this
possibility, below, with a specification that includes lead effects of wildfires, and find little evidence for it.
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have significant effects; however, the two-year lag in model (2) is significantly different from zero at

the 5% level when standard errors are clustered at the district level. The estimate of 0.6 is lower

than the one-year lagged effect (0.8), adding further evidence that the behavioral biases due to the

salient fire diminish with the time since the fire.

5.3 Sensitivity analysis and robustness checks

We conduct sensitivity analyses and robustness checks on our main specification. The first test

evaluates the sensitivity of our results to the definition of close fires (fires within a distance c of

the WUI) and close cells (cells within a distance d of the WUI). Figure 3 presents the coefficients

on the firedist variable for all combinations of c = 2, 5, 10 and d = 2, 5, 10, using version (2) of

the model in Table 3. The lines in each panel correspond to different definitions of close fires and

the three panels correspond to different definitions of close grid cells. For example, when we limit

close fires and close cells to those within 2 km (c = d = 2; the dashed line in Panel A), we find that

a close fire raises the probability of a fuels management project by approximately 2.5 percentage

points. The effect is strong and persistent to a three-year lag (coefficient values marked by a solid

triangle are significantly different from zero at the 5% level and those marked by an “x” are not).

Taken together, the results in Figure 3 provide support for the use of distance to indicate the

presence of salient wildfires, with their prospect of triggering behavioral biases. First, fires that

occur closer to WUI residents have larger effects. In all three panels, the dashed line, corresponding

to fires within 2 km, is always above the dashed-dotted line, corresponding to fires within 10 km.

Expanding the fire proximity threshold (c) is likely to include fires that are not as salient to WUI

residents, making them less likely to trigger heuristics in decision-making. Second, for a given fire,

effects of a salient wildfire are amplified at distances close to WUI residents. Lines in Panel A,

corresponding to grid cells within 2 km of WUI blocks, tend to be higher than those in panel C,
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corresponding to grid cells within 10 km of WUI blocks. When we expand the size of the window

around WUI blocks (d), we include fuels management projects that provide few benefits to satisfy

the demands of WUI residents concerned with wildfire risk. Third, the effect of a close wildfire falls

off over time, consistent with residents subject to recency bias.

The second set of sensitivity analyses considers the possibility of serial correlation in our data.

There may be negative serial correlation if management agencies are less likely to undertake a

fuels management project in locations where fuels have recently been reduced. On the other hand,

there may be positive serial correlation if projects take more than one year to complete or if

fuels management projects take place in adjacent areas over several years and we mismeasure the

precise boundaries of these activities.21 Statistics in Table 1 show that, conditional on a fuels

reduction project taking place, most grid cells receive fuels management only once. However, it

is not uncommon for grid cells to receive fuels management two or more times. We address serial

correlation by recoding the dependent variable so that a multi-year fuels management project

appears as a single-year project (Table 4). For example, if yit = yit+1 = 1, we recode the variables

as yit = 1, yit+1 = 0. In general, when we observe a cell with consecutive values of one, we set

all but the first value to zero. This recoding procedure has the effect of purging the data of serial

correlation due specifically to multi-year fuels reductions. We estimate all versions of the main

specification with the recoded data and find little difference in the results.22

We estimate a version of equation (8) with one- and two-year leads (Table 5) as a placebo test,

as we would not expect the likelihood of observing a fuels reduction project today to be influenced

21This is possible given the way we define boundaries for fuels reduction projects, described in section 4.2.
22Another way to test whether our results are robust to the possibility of serial correlation is with the estimator in

Arellano and Bond (1991). We estimate versions of equation (8) that include one- and two-year lagged dependent
variables. The results, available from the authors upon request, provide evidence of positive serial correlation. The
coefficients on the lagged dependent variables are positive and significantly different from zero. Nevertheless, we
still find evidence of contemporaneous effects of close fires on the likelihood of fuels management projects. The
effects of fires in previous years are no longer significant, most likely because the lagged dependent variables absorb
the effects of past fires.
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by the occurrence of future fires. Significant lead effects could be due to omitted time-varying

cell-level factors that are correlated with wildfires and fuels reduction projects. Formally, lead

parameters are included by modifying the summation term in equation (8) so that ` takes values

from -4 to 2. A finding of insignificant lead coefficients gives us further confidence that we identify

causal effects of wildfires on government agency decisions and are not simply finding that agencies

locate fuels management projects in areas that are likely to experience wildfires. The estimated

coefficients on the lead variables are small relative to the contemporaneous and lagged parameters

and not significantly different from zero with the exception of the two-year lead in models (2) and

(5). Estimates of the other model coefficients are largely unaffected.

Although our data only includes pre-fire fuels reduction projects (predominantly controlled

burns and mechanical thinning), it is conceivable that some post-fire activities could be misclassified

as fuels management. Soon after a fire, land managers may thin trees, clear debris, and conduct

salvage logging in the area where a fire occurred. In this case, we might misinterpret post-fire clean-

up activities as a response by managers to the salient event. We guard against this possibility by

dropping all observations within the perimeter of an earlier fire (Table 6).23 This is likely an

overly conservative approach as we may discard information about fuels reduction activities that

occurred in response to a later fire occurring within the perimeter of an earlier fire. Nevertheless,

we continue to find a significant contemporaneous effect and, in model (2), a one-year lagged effect

that is significant at the 5% level.

5.4 Learning as an alternative to behavioral biases

An alternative interpretation of our empirical results is that government agencies and the public

learn about risks from future fires when a wildfire occurs. In the theory, this corresponds to

23Wildfires never burn all of the vegetation within the fire perimeter. Therefore, clean-up activities are most likely
to occur inside the perimeter.
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the case in which a fire event causes the agency and the community to update and increase,

respectively, the values of α01 and α̃01 (Result 2). The key question to ask is, what information

could a wildfire provide to managers and the community to allow them to learn about the likelihood

of a future fire? The three categories of determinants of large wildfires in the western U.S. over

the period 1984-2008 that managers and communities could learn about are ignitions, climate,

and topography/vegetation (Parisien et al., 2012). The elements of some of these factors are not

applicable to our study of public forest lands (population density and land use) and others are

controlled for by the grid-cell level fixed effects (topographic roughness and road density24) and

year-by-region fixed effects in our model (large-scale measures of lightning strikes). Parisien et al.

(2012) find that wildfire probability is predicted by a number of climate variables, including long-

term temperature, precipitation, and wind speed means. It is conceivable that weather distributions

changed over the period of analysis (i.e., climate change occurred) or that there were sustained

periods of weather anomalies such as droughts or extended rainy periods. Wildfires may have

alerted land managers and communities to the effects of these events on future fire risk. However,

because climate change and weather anomalies tend to be large-scale phenomena, they are also

controlled for by the year-by-region fixed effects.25 The smallest region used in our analysis is the

Census tract, which has an average size of 364 km2. For comparison, the land area of Martha’s

Vineyard in Massachusetts is 227 km2 and Lake Tahoe in California is 495 km2 in size; weather

anomalies are likely to be constant within such small areas.

The remaining determinant of wildfire that could vary within the scale of the region-by-year fixed

effects is the condition of the local vegetation. Although we expect the fixed effects in our model to

control for most of the key determinants of fire risk about which agencies and communities could

24Parisien et al. (2012) indicate that there was little year-to-year variation in topographic roughness and road densities
over the period 1984-2008, which mostly covers our study period.

25Parisien et al. (2012) find that the capacity of a site to produce biomass, measured as gross primary productivity,
is also associated with wildfires, but indicate that productivity is largely determined by climate.
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learn, we provide a formal analysis using the Vegetation Condition Class (VCC) measure described

above. The VCC indicates the amount of fuels on the landscape and, thus, the potential for severe

wildfires. If managers learn about vegetation conditions from local wildfires and the fixed effects in

our model do not adequately control for fire hazard, then the response to a nearby wildfire should

be magnified when there are heavy fuel loads. We investigate this hypothesis by interacting the

VCC variable with the treatment variable:

yit =

0∑
`=−4

β`1{∃s ∈ Si : firedists,t+` ≤ c}

+ ζ
0∑

`=−4
[V CCi,t+` × 1{∃s ∈ Si : firedists,t+` ≤ c}] + γi + δtm(i) + εit

(9)

where V CCi,t+` is the condition class for cell i in year t + ` and ζ is a model parameter. If the

estimate of ζ is positive and significantly different from zero, then the effect of a wildfire on the

probability of a fuels management project increases with fuels loads. However, results in Table 7

reveal an insignificant effect of VCC, in opposition to the learning model in Result 2.26 The original

estimates of the β coefficients are unchanged when we include the VCC interaction term.

5.5 Additional support for the role of behavioral biases

To provide additional support for behavioral biases as the source of observed changes in fuels

management projects, we show that the effects of close fires vary with characteristics of WUI

communities and the size of fires. We estimate two sets of models with interactions similar to (9).27

26In equation (9), ζ is restricted to be the same for the contemporaneous and lagged effects. We use this parsimonious
specification because we do not have strong a priori reasons to expect the marginal effects of VCC to differ by the
length of the lag. We estimated alternative models that allow each lag to have a different coefficient. Based on
F -tests reported in Table 7, we cannot reject the null hypothesis that the coefficients are equal.

27As in equation (9), ζ is restricted to be the same for the contemporaneous and lagged effects. According to F -tests
reported in Table 7, we cannot reject the null hypothesis that the coefficients are equal.
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The first version is specified:

yit =

0∑
`=−4

β`1{∃s ∈ Si : firedists,t+` ≤ c}

+ ζ

0∑
`=−4

∑
s∈Si

[zs × 1{firedists,t+` ≤ c}] + γi + δtm(i) + εit

(10)

where zs is a characteristic of WUI block s or of the fire that treats block s. We define zs as,

alternatively, the population of the Census tract, the number of housing units in the Census tract,

and logged fire size.28 The second version of the model in (10) includes VCC as a control for

objective fire risk.

Results in Table 7 reveal that the effects of a close wildfire are larger as the population and

the number of housing units increase. The finding that effects of close fires vary with community

characteristics shows that local residents are part of the allocation mechanism (see also Anderson

et al., 2013). The coefficient for fire size is positive but significantly different from zero at only the

8% level. The lack of significance may be due to the fact that the fire data we use only includes

relatively large fires. Finally, we find that the effects of resident characteristics and fire size are

unchanged when we control for landscape conditions with the VCC variable. This suggests that

fuels management decisions depend on perceived benefits subject to behavioral biases rather than

on learning about objective benefits.

6 Conclusions

The economics literature on behavioral biases has focused on how consumption of private goods is

affected by features of the choice problem. In this paper, we extend this literature to examine how

28We estimate the fire size version of the model with the sample used to produce Table 6. A salient wildfire could
result in behavioral biases but also limit the area available for fuels treatments. By using the restricted sample,
our estimate measures only the first effect.
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behavioral biases can affect the government provision of public goods. In our theoretical model, the

government decides how much of a local public good to allocate, taking into account the lobbying

activity of the public. Due to common decision-making heuristics, a salient event such as a wildfire

can increase the perceived benefit of the good among the public. The public then lobbies for more

of the public good, leading the government, which pays a cost for ignoring its constituents, to

allocate more than the efficient amount of the public good. This can occur even when the salient

event has lowered the true benefit of the good.

The empirical results support our theory that behavioral biases can influence public goods

provision. We find that federal land management agencies in the western U.S. are more likely to

locate fuels management projects near communities that have experienced a recent nearby wildfire.

This increased response comes even as the recent wildfire has likely decreased the likelihood of loss

from future fires and, therefore, the current value of fuels management projects. With our main

specification, we estimate that the probability of a fuels management project increases by 1.6 to

1.8 percentage points in the year the fire occurs and by 0.6 to 0.9 percentage points in the year

after the fire. These are relatively large changes considering that the average annual rate of fuels

management projects on all forested lands in our sample is approximately 3.5%. Our finding that

the effects of the nearby wildfire attenuate after one or two years is consistent with attenuation

of behavioral biases among the public over a short time horizon, as found by McCoy and Walsh

(2018), and with recency bias. However, our results are also consistent with a prompt response by

the government that satisfies the increased demand for fuels management. One way to investigate

the dynamics of government and community responses to salient wildfires would be to consider

WUI blocks that experience nearby fires in multiple years and see how the effects change over time.

For this analysis we would need a data set covering a longer time period.

The results of robustness checks indicate that the salience of wildfires drives the behavioral
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biases. First, we find that the effects of nearby wildfires on the likelihood of observing fuels

management projects are strengthened when we focus our analysis on closer fires, which should be

more salient to WUI residents (Figure 3), making them more likley to lead to behavioral biases.

The effects also increase when we consider grid cells closer to WUI communities, suggesting that

the federal agencies are responding to heightened demand for fuels management projects. Second,

we find that effects of nearby wildfires increase with the population of the WUI community and the

number of housing units (Table 8). These results suggest that the residents of WUI communities

are part of the mechanism for determining the location of fuels management projects, consistent

with a role for behavioral biases in decision-making. Finally, we find evidence that contradicts

alternative explanations for our results. The finding of insignificant coefficients on lead variables

suggests that agencies are not simply locating fuels management projects in places that are likely

to have fires. The finding that vegetation condition does not magnify the effects of nearby fires

guards against the possibility that our results reflect learning by agencies about the risk of future

fires.

In addition to local public goods such as fuels management on public lands, behavioral biases

could affect the government provision of national-level public goods in other contexts where salient

events may act as a catalyst for government action (Anderson et al., 2018). In response to the

Exxon Valdez oil spill in 1989, the U.S. Congress passed the Oil Pollution Act of 1990 that required

double hulls on oil tankers. The Three Mile Island nuclear accident in 1979 led to stricter controls

on nuclear plants and the outbreak of West Nile virus in New York City in 1999 prompted the

creation of a national surveillance system for infectious diseases in the U.S. Catastrophic flooding

of the Mississippi River has often been followed by government-funded levee building and other

channel engineering projects (Wright, 2000). The September 11, 2001 terrorist attacks in the U.S.

were followed by military operations and government investment in security. These may be rational
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responses by the government to new information about the level of risk. However, our paper offers

an alternative explanation. The public’s demand may be distorted by the salience of the catalyzing

event, which could mean that the government response to heightened demand for public goods is

inefficient.
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7 Appendix

We evaluate the differential d(Q∗01+Q∗A1) defined in Equation (7). Using the definition Q∗01 = α01
α1+2η

and Equation (5), we obtain:

d(Q∗01 +Q∗A1) =
dα01

α1 + 2η
+

γ

2(γ − α1)

((
∂Q∗L1
∂α̃01

−
∂Q∗L2
∂α̃01

)
dα̃01 +

(
∂Q∗L1
∂α01

−
∂Q∗L2
∂α01

)
dα01

)
(11)

To evaluate the partial derivatives in Equation (11), we rewrite the expressions for Q∗L1 and Q∗L2
in Equation (6), distinguishing the values of α̃01, α̃02, Q

∗
01, and Q∗02:

Q∗L1 = K0

(
α̃01 − α1Q

∗
01 +

α2
1γ

2(γ − α1)
(Q∗01 −Q∗02)

)
+K1Q

∗
L2
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α̃02 − α1Q

∗
02 +
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1γ

2(γ − α1)
(Q∗02 −Q∗01)

)
+K1Q

∗
L2

(12)

where Q∗02 = α02
α1+2η . We obtain Equation (6) when α̃0 = α̃01 = α̃02 and α0 = α01 = α02.

Substituting for Q∗L2 and Q∗L1 and collecting terms, we have:
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)]
(13)

Taking partial derivatives of Q∗L1 and Q∗L2, we obtain the expressions from Equation (11):(
∂Q∗L1
∂α̃01

−
∂Q∗L2
∂α̃01

)
dα̃01 =

K0

1−K2
1

(1−K1)dα̃01(
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−
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)
dα01 =

K0

1−K2
1

(1−K1)

(
α2
1γ

γ − α1

1

α1 + 2η

)
dα01

(14)

Because K1 < 1 and γ−α1 > 0, the expressions in Equation (14) have the same signs, respectively,
as dα̃01 and dα01.

We derive three results. Result 1: if dα01 ≤ 0, then there exists dα̃01 > 0 such that d(Q∗01 +
Q∗A1) > 0; Result 2: if dα̃01 > 0 and dα01 > 0, then d(Q∗01 + Q∗A1) > 0; and Result 3: if dα̃01 < 0
and dα01 < 0, then d(Q∗01 + Q∗A1) < 0. Result 2 follows from the fact that when dα̃01 > 0 and
dα01 > 0, all terms in Equation (11) are positive, and conversely for Result 3. For Result 1, each
of the dα01 terms are weakly negative. Thus, we need for the dα̃01 term to be sufficiently large.
Specifically, if:

dα̃01 > −
(

α2
1γ

γ − α1

1

α1 + 2η
+

1−K2
1

K0(1−K1)

1

α1 + 2η

)
dα01 (15)

then d(Q∗01 +Q∗A1) > 0.
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Figure 1: Kernel density plots of the distributions of distance to WUI and distance to nearest fire
within the sample of forested grid cells and WUI blocks, respectively
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Note: Kernel density functions are Epanechnikov with bandwidth 5. Distributions are across observations for which
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Figure 2: Illustration of the data and empirical design
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Figure 3: Sensitivity analysis for definitions of close fires and close public land grid cells
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Table 1: Rates of fuels management projects by land cover type

Rate of fuels
management

Fuels management projects per grid cell

Mean
No. obs.
(grid cell-

years)
None Once Twice

3 or
more
times

No. obs.
(grid cells)

I. All grid cells

Evergreen or mixed forest 0.025 4,830,399 0.86 0.089 0.030 0.020 536,711
Deciduous forest 0.011 211,077 0.93 0.052 0.013 0.005 23,453
Shrubland 0.005 6,392,430 0.97 0.022 0.006 0.003 710,270
Herbaceous 0.006 1,105,470 0.96 0.025 0.007 0.005 122,830
Other 0.005 472,635 0.98 0.015 0.005 0.004 52,515
Total 0.013 13,012,011 0.93 0.047 0.015 0.010 1,445,779

II. Grid cells < 5 km from WUI

Evergreen or mixed forest 0.035 1,864,575 0.82 0.108 0.041 0.033 207,175
Deciduous forest 0.012 98,073 0.92 0.057 0.014 0.006 10,897
Shrubland 0.010 1,450,062 0.95 0.035 0.011 0.008 161,118
Herbaceous 0.011 246,996 0.94 0.038 0.012 0.009 27,444
Other 0.012 103,482 0.94 0.037 0.013 0.011 11,498
Total 0.022 3,763,188 0.88 0.072 0.026 0.020 418,132

Note: Land categories taken from the 2006 National Land Cover Database (Fry et al., 2011).
Evergreen forests and deciduous forests consist of greater than 75% evergreen and deciduous
trees, respectively. Mixed forests are areas where neither evergreen nor deciduous tree species
dominate. Shrubland is areas dominated by shrubs less than 5 meters tall. Herbaceous land
includes land dominated by grasses or other herbaceous vegetation. Other includes planted or
cultivated land, developed land, wetlands, barren areas, and water. For example, on evergreen
and mixed forests, 2.5% of our grid cell-year observations are treated (our dependent variable
equals 1 2.5% of the time). 86% of evergreen or mixed forest grid cells in the study area never
received a fuels reduction treatment. 2.0% of grid cells were treated 3 or more times. Out of the
1,445,779 grid cells, 536,711 are mixed forest or evergreen forest.

Table 2: Descriptive statistics for WUI block data set

All obs.

(mean)

Obs. within 5 km

threshold (mean)

Distance to nearest fire in study period (km) 15.4 14

Population∗ 4,948 4,660
No. of housing units∗ 2,197 2,460
Per capita income∗ 21,361 21,182
Percent graduated high school∗ 83.8 86.5

Number of observations 454,767 105,613

∗Variable is observed only at the Census tract level.
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Table 3: Main specification predicting fuels reduction status of forested grid cells conditional on
whether nearby WUI Census blocks experienced recent wildfires

(1) (2) (3) (4) (5)

firecloset 0.0161 0.0182 0.0161 0.0167 0.0163
(0.0038)** (0.0039)** (0.0037)** (0.0042)** (0.0041)**
(0.0048)** (0.005)** (0.0043)** (0.0053)** (0.0051)**

firecloset−1 0.0074 0.0081 0.006 0.0058 0.0085
(0.0032)* (0.0024)** (0.0025)* (0.0027)* (0.0033)*
(0.0043) (0.0031)** (0.0028)* (0.0031) (0.0043)*

firecloset−2 0.0044 0.0058 0.0018 0.0051 0.0040
(0.0032) (0.0029)* (0.0025) (0.0033) (0.0029)
(0.0035) (0.0032) (0.0025) (0.0035) (0.0031)

firecloset−3 0.0001 0.0004 0.0011 0.0011 0.0005
(0.0033) (0.0029) (0.0033) (0.0035) (0.0029)
(0.0029) (0.0024) (0.0028) (0.0025) (0.0025)

firecloset−4 -0.0008 -0.0015 -0.0008 -0.0001 -0.0009
(0.0025) (0.0025) (0.0027) (0.0027) (0.0025)
(0.0025) (0.0028) (0.0025) (0.0027) (0.0023)

Fixed effects Year Year×unit Year×district Year×county Year×tract
No. of groups 207,175 207,175 207,175 207,175 207,175
No. of obs. 1,864,575 1,864,575 1,864,575 1,864,575 1,864,575

Note: Regressions include grid cells within 5 km of any WUI Census block. Variables
firecloset−` equal 1 if a fire occurred within 5 kilometers of a nearby Census block in
year t − ` and 0 otherwise. The sample is limited to pixels NLCD classifies as forested
in 2006. In addition to fixed effects noted in the table, all models include grid cell fixed
effects. Robust standard errors are clustered by district first and unit second, ** p<0.01,
* p<0.05.

40



Table 4: Test of robustness in which the dependent variable is recoded in order to examine the
influence of multi-year fuels reduction projects

(1) (2) (3) (4) (5)

firecloset 0.0155 0.0171 0.0162 0.0164 0.0159
(0.0036)** (0.0038)** (0.0036)** (0.004)** (0.0039)**
(0.0045)** (0.0047)** (0.0039)** (0.0049)** (0.0047)**

firecloset−1 0.0072 0.0071 0.0058 0.0056 0.0080
(0.003)* (0.0022)** (0.002)** (0.0024)* (0.0032)*
(0.0041) (0.003)* (0.0022)** (0.0029) (0.0043)

firecloset−2 0.0036 0.005 0.002 0.0047 0.0032
(0.0026) (0.0024)* (0.0023) (0.0028) (0.0024)
(0.0026) (0.0027) (0.0022) (0.0027) (0.0024)

firecloset−3 -0.0008 -0.0004 0.0011 0.0001 -0.0007
(0.0027) (0.0024) (0.0028) (0.0029) (0.0025)
(0.0024) (0.0022) (0.0023) (0.0022) (0.0023)

firecloset−4 -0.0012 -0.0017 -0.0004 -0.0007 -0.0019
(0.002) (0.0022) (0.0024) (0.0022) (0.0023)
(0.002) (0.0022) (0.0021) (0.0022) (0.002)

Fixed effects Year Year×unit Year×district Year×county Year×tract
No. of groups 207,175 207,175 207,175 207,175 207,175
No. of obs. 1,864,575 1,864,575 1,864,575 1,864,575 1,864,575

Note: Regressions include grid cells within 5 km of any WUI Census block. Variables
firecloset−` equal 1 if a fire occurred within 5 kilometers of a nearby Census block in year
t−` and 0 otherwise. The sample is limited to pixels NLCD classifies as forested in 2006. In
addition to fixed effects noted in the table, all models include grid cell fixed effects. Robust
standard errors are clustered by district first and unit second, ** p<0.01, * p<0.05.
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Table 5: Placebo test in which two-year leads of fireclose are included in order to rule out joint
determination of fire and fuel reduction project locations

(1) (2) (3) (4) (5)

firecloset 0.0176 0.0204 0.0182 0.0188 0.0190
(0.0045)** (0.0048)** (0.004)** (0.0051)** (0.0049)**
(0.0059)** (0.0063)** (0.0049)** (0.0065)** (0.0062)**

firecloset−1 0.0105 0.0104 0.0084 0.0085 0.0117
(0.0036)** (0.0029)** (0.003)** (0.003)** (0.0038)**
(0.0049)* (0.0035)** (0.0032)** (0.0035)* (0.005)*

firecloset−2 0.0088 0.01 0.0041 0.0098 0.0081
(0.0041)* (0.0037)** (0.0033) (0.0042)* (0.0039)*
(0.0045) (0.004)* (0.0033) (0.0044)* (0.0043)

firecloset−3 0.0043 0.0037 0.0028 0.0051 0.0053
(0.0041) (0.0036) (0.0039) (0.0043) (0.0038)
(0.0033) (0.0028) (0.003) (0.0029) (0.0032)

firecloset−4 -0.0007 -0.0014 -0.0002 0.0004 -0.0002
(0.003) (0.003) (0.0032) (0.0032) (0.0028)
(0.0028) (0.003) (0.0029) (0.0029) (0.0028)

firecloset+1 0.0027 0.0042 0.0026 0.0026 0.0026
(0.0027) (0.0028) (0.003) (0.0028) (0.0029)
(0.0025) (0.0028) (0.0029) (0.0027) (0.0028)

firecloset+2 0.0039 0.0071 0.0058 0.0047 0.0062
(0.0029) (0.0031)* (0.0036) (0.0031) (0.0031)*
(0.0031) (0.0036)* (0.0041) (0.0031) (0.0035)

Fixed effects Year Year×unit Year×district Year×county Year×tract
No. of groups 207,175 207,175 207,175 207,175 207,175
No. of obs. 1,450,225 1,450,225 1,450,225 1,450,225 1,450,225

Note: Regressions include grid cells within 5 km of any WUI Census block. Variables
firecloset−` equal 1 if a fire occurred within 5 kilometers of a nearby Census block in year
t−` and 0 otherwise. The sample is limited to pixels NLCD classifies as forested in 2006. In
addition to fixed effects noted in the table, all models include grid cell fixed effects. Robust
standard errors are clustered by district first and unit second, ** p<0.01, * p<0.05.
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Table 6: Base specification with observations within the perimeter of previous fires removed to
avoid misclassification of post-fire activities as fuels reductions

(1) (2) (3) (4) (5)

firecloset 0.0121 0.0139 0.0115 0.0125 0.0125
(0.0032)** (0.0034)** (0.0035)** (0.0036)** (0.0035)**
(0.0039)** (0.0042)** (0.0039)** (0.0044)** (0.0041)**

firecloset−1 0.0031 0.0049 0.004 0.0031 0.0038
(0.0028) (0.0025)* (0.0027) (0.0028) (0.0025)
(0.0033) (0.0028) (0.0028) (0.0029) (0.0027)

firecloset−2 0.0033 0.0042 -0.0001 0.0037 0.0028
(0.0035) (0.003) (0.0025) (0.0036) (0.0031)
(0.0036) (0.0032) (0.0024) (0.0036) (0.0031)

firecloset−3 -0.0021 -0.0009 0.0000 -0.0006 -0.0018
(0.0034) (0.003) (0.0033) (0.0036) (0.0029)
(0.0029) (0.0025) (0.0028) (0.0028) (0.0025)

firecloset−4 -0.0006 -0.0011 -0.0008 0.0003 -0.0007
(0.0026) (0.0027) (0.0028) (0.0027) (0.0029)
(0.0026) (0.0028) (0.0027) (0.0028) (0.0024)

Fixed effects Year Year×unit Year×district Year×county Year×tract
No. of groups 200,895 200,895 200,895 200,895 200,895
No. of obs. 1,770,739 1,770,739 1,770,739 1,770,739 1,770,739

Note: Regressions include grid cells within 5 km of any WUI Census block. Variables
firecloset−` equal 1 if a fire occurred within 5 kilometers of a nearby Census block in
year t− ` and 0 otherwise. The sample is limited to pixels NLCD classifies as forested in
2006, and pixels within the perimeter of previous fires have been removed. In addition to
fixed effects noted in the table, all models include grid cell fixed effects. Robust standard
errors are clustered by district first and unit second, ** p<0.01, * p<0.05.
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Table 7: Variation in salience effects by census block characteristics

(1) (2) (3) (4)
Population Housing units Ln(Fire size) VCC

I. Interaction coefficient 1.1e-06 2.9e-06 .0011 -.0041
(5.4e-07)* (9.8e-07)** (.00099) (.0036)

II. Interaction coefficient 1.1e-06 2.9e-06 .0011
(5.4e-07)* (9.8e-07)** (.00099)

VCC .00068 .00065 .0012
(.00056) (.00056) (.00054)*

Grid cells within past fire perimeters Yes Yes No Yes
No. demog. interaction lags 4 4 4 4
No. of groups 207,175 207,175 200,895 207,175
No. of obs. 1,864,575 1,864,575 1,770,739 1,864,575
F-statistic 0.3611 1.2714 0.2721 0.8673
Mean 4,949 2,359 8.96 2.38
Min 0 1 7.01 1.01
Max 36,146 9,905 12.4 3.86

Note: Regressions are as in column 3 of table 3, but include interaction terms as specified
in equation 10, whose coefficients are reported. Row II also includes a control for vegetation
condition class (VCC), whose coefficient is reported. Robust standard errors are clustered by
unit, ** p<0.01, * p<0.05. Reported F-statistics use results from an unreported regression
to test the null hypothesis that estimated ζ coefficients from regressions in row I are equal
across lags of the interaction. An F-statistic less than 3.00 indicates insufficient evidence that
ζ coefficients differ among lags. The reported mean, maximum, and minimum in each column
correspond to sample statistics for each each column’s variable (zs) among all treated blocks.
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