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Abstract 

Research on the optimal number of survey response options (scale length) has focused on multi-item 
indices, leaving us with less understanding of how the chosen length of a single-item attitude measure can 
affect its reliability, validity, and performance in statistical analyses. We employ both Monte Carlo 
simulations and a two-wave experiment to address these questions. The simulations provide an important 
basic framework for conceptualizing the issues at play in optimal scale length, while the experiment 
provides evidence against which the simulation-based expectations can be compared. 
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Introduction 

What is the value of obtaining fine-grained vs. coarse measures of attitudes, opinions, 

preferences, experiences, and other subjective phenomena?  A remarkably large number of studies from a 

multiplicity of fields have considered this question, with the earliest ones dating back at least to the 

1920s.  Every general overview of survey question-wording covers the issue (e.g., Krosnick and Presser 

2010, Shaeffer and Presser 2003), and at least one author has taken up the challenge of providing a 

detailed review (Cox 1980).  The topic is addressed under a variety of headings, including scale 

granularity (e.g. Brudvig 2007, Pearse 2011), coarseness, (e.g., Aguinis, Pierce and Culpepper 2008, 

Krieg 1999), sensitivity (e.g., Elkins 2000) and precision (e.g., Shively 1998).  Even more common are 

writings that depict the question as involving the optimal length of a scale or the optimal number of scale 

points or response options. 

Complicating matters is the fact that the scale length problem varies along multiple dimensions.  

How one thinks about or studies it depends, first, on the kind of property being measured.  Is it a 

judgment about some stimulus that is external to the self (e.g., the usefulness of a given search engine) or 

about one's own feelings or beliefs?  If it is about the self, is it, for example, about the extent of agreement 

or disagreement with some statement, the positivity/negativity of feelings about a political candidate, or 

the degree of importance placed upon some value?  Another dimension is whether the measure will serve 

as a standalone indicator of a concept or instead as one of a set of component variables to be combined 

into an index.  The survey mode is relevant, especially whether it allows visual displays to be available to 

respondents, as is the fact that changes in the number of response options usually coincides with changes 

in the number and meaning of response labels. Comparing odd-numbered to even-numbered scales (e.g., a 

5-point scale vs. 4-point scale, or a scale ranging 0-10 vs. one ranging from 1-10) ties the scale-length 

question to the question of whether a middle alternative should be offered. 

What is more, the question of how many scale points is optimal when designing survey questions 

is related to the question of what happens when one collapses a long or continuous scale into a smaller 

number of categories, which may or may not entail moving from a higher level of measurement (interval) 
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to a lower one (ordinal).  As will become evident later, we see these questions as intimately connected, 

but the connection is often not made in the literatures addressing the twin topics, though exceptions to 

that generalization are still plentiful (e.g., Bollen and Barb 1981, Ferrando 2003).  The literature on 

optimal scale length is peppered with evidence on how scale length influences reliability, while 

assessments of validity are scarce.  The writings on collapsing otherwise continuous variables may touch 

on reliability but otherwise tend to hone in on problems related to bias and efficiency in statistical 

estimation and to consider non-survey data as well as survey data  (Owen and Froman 2005 is a good 

example and also provides a nice overview of the literature). 

We dip our toes into this water for three main reasons.  First, despite the volumes that have been 

written on the topic of coarse vs. granular measures in survey research, very little of that attention appears 

to have focused on single-item indicators (Cox 1980), let alone single-item indicators of attitudes, which 

are our focus, here, and which are commonplace in the survey research of political scientists.  It is not at 

all clear that one can draw lessons from the many studies of multi-item indices of Likert-type items when 

thinking about the optimal scale length of standalone attitude measures.  Studies of scale length as it 

pertains to single-item attitude measures have mainly addressed the merits of using fully continuous 

graphic rating or visual analog scales (see, e.g., Couper et al. 2006 and references therein), though 

inquiries into web-based "sliders" have been trickling out (e.g., Cook et al. 2001). 

Second, we feel that greater clarity can be brought to the topic by an approach that combines 

Monte Carlo simulations with an experimental study, which is what we present in this paper.  Although 

there are plenty of simulation studies and empirical (some experimental) studies in the broader literature, 

it is rare to find a combination of the two.  None that we are aware of focuses on single-item attitude 

measurement. 

Finally, we seek to forge a tighter connection between the literature on scale length decisions in 

survey research and that which is focused on the statistical analysis of coarsened or collapsed measures.  

This means going beyond the focus on how the reliability of an attitude scale varies depending on 

whether it is measured in 5 vs. 7 vs. 11 vs. 101 points, to consider how the same measurement decision 
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affects the ability to reach valid conclusions when the measure is put to use as a dependent or as an 

independent variable in a statistical analysis. 

In what follows we begin by laying out the logic and design of a set of simulations that we use to 

demonstrate how the properties of an attitude measure may vary as a function of the length of its scale. 

The simulations reflect a model of the survey response, which we articulate, and build in variations to 

reflect matters of debate or uncertainty, which we describe.  A central feature of the approach we take is 

found in its delineation of random error vs. rounding error in measurement.  The simulations demonstrate 

how reliability, validity, and effect estimation can vary as a function of the length of the attitude scale. 

After presenting the results of the simulations and drawing lessons from them, we report on results from 

an experimental study designed to be complementary. 

Simulation Logic and Design 

To begin, we assume that each individual's attitude can be represented as a distribution over a 

real-numbered attitude scale, which is set to range from 0 to 100.1 The center of that distribution is the 

person's true score, while the variation indicates how a person's responses are likely to fluctuate across 

repeated measurements. The actual response, the response given on a single occasion, is merely a point 

from the distribution. The individual then faces a mapping problem, of converting his or her actual 

response into a position on the scale that is presented by the survey question.  We refer to the choice made 

as the individual's observed response (or observed score). Of paramount interest is how well observed 

responses reflect true scores as the attitude scale presented to respondents varies in length (i.e., the 

number of scale points or response options). 

As emphasized by Achen (1975) and many scholars writing subsequently (e.g., Alwin and 

Krosnick 1991, Green and Palmquist 1994), fluctuating responses can be thought of as being induced by 

the psychology of the individual respondents or by the measurement process/instrument itself. According 

to one version of the individual instability argument, people's responses will vary depending upon the 

                                                 
1 Later, we replace the assumption that true scores can take real numbered values between some limits with an 
assumption that true scores can take integer values between some limits. 
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particular set of considerations that are salient when they are called upon to express their attitude (Zaller 

1992).  Variation in responses around a central tendency reflects the variation in considerations that the 

individual samples when he or she provides a response.  A second version of the individual instability 

argument holds that people may not be able to reliably place themselves on a single point of the 

continuum but that they will be able to identify a range within which their opinion lies (Sherif and 

Hoveland 1961, Krosnick and Presser 2010).  If asked to select a specific point on the continuum, a 

person would choose a point within that range. Finally, fluctuation in responses could be errors induced 

by vagueness or complexity of the measurement instrument or features of the setting in which it is 

implemented.  We refer to these three ideas about the source of response fluctuations using the labels of 

response sampling, judgmental uncertainty, and measurement error, respectively. 

Regardless of why responses fluctuate, we assume it is the central tendency of the distribution—

the true score—that we are trying to measure. This assumption is warranted if it is the true scores that are 

causing and being caused by other variables of interest, not the response that deviates from the true score 

due to any given moment's sampling of considerations, or uncertainty about where, precisely, to place 

oneself within some range of the continuum, or errors of measurement.  In addition, we assume that the 

variation within individuals across repeated measurements is random—that people randomly draw a score 

from their own response distribution, which is centered on their true attitude. This assumption is 

warranted if the sampling of considerations is as-if random (response sampling model), if respondents are 

certain of the range within which their opinion falls but uncertain as to where within that range it falls 

(judgmental uncertainty model), and/or if the sources of measurement error are unsystematic or 

idiosyncratic.2 

 To represent these different accounts of response fluctuation in our simulations we vary the form 

of the error distribution, using both a normal and a uniform form.  The idea that responses deviate from 

true scores due to response sampling or measurement error—or some of both—is probably best captured 

                                                 
2 We also assume that the errors are independent across individuals within the sample. 
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by the normal form, while the idea that fluctuations reflect judgmental uncertainty is best represented by 

the uniform. We also vary the standard deviation of the error distributions.3 

This set-up allows the magnitude of random variation in people's responses to vary across 

simulations but not across individuals within simulations (with one exception, described below). 

Moreover, it assumes the extent of random variation in responses is the same regardless of the scale with 

which attitudes are measured.  This, however, may be implausible, as it is commonly believed that longer 

scales are more difficult for respondents and may introduce more measurement error as a result.  Thus, we 

also introduce a variation that allows measurement error to grow with scale length. 

The first step in each simulation was the generation of true scores. We used two symmetric true 

score distributions: (a) normal, mean 50 and standard deviation 20; (b) uniform, mean 50 and ranging 

from 0 to 100.   

 Next, the actual response for each person was generated by drawing an error from the 

appropriate distribution (normal or uniform, with varying magnitudes of error variance) and adding that to 

the true score.  This procedure yields some cases with responses less than 0 or greater than 100.  In some 

simulations, these outlying scores were recoded to 0 and 100, respectively, which effectively forced the 

actual scores to fall between 0 and 100, inclusive. This censoring procedure reduces the error variation of 

individuals with true scores at or near the extremes of the scale, which captures the well-known tendency 

of people with more intense attitudes to show more response stability (Krosnick et al. 1993, Visser and 

Krosnick 1998). 

The third step in the simulation was the mapping of actual responses onto response options, for 

scales of varying length.  We represented this choice for scales with 2, 3, 4, 5, 6, 7, 11, and 101 points.  

The 2-point scale presents people with options for identifying the direction of their attitude, favorable or 

unfavorable.  The 3-point scale adds a middle or neutral option.  The 4 and 5-point scales allow for 

intensity variations (e.g., very favorable vs. somewhat favorable) but differ in whether a middle point is 

                                                 
3 With normally distributed errors, we used standard deviations of 0, 5, 10, 15, 20, and 25.  The uniformly 
distributed errors were set to range from +/- 0, +/-5, +/-10, +/-15, +/-20, and +/-25. 
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provided. The 6 and 7-point scales allow for further distinctions in intensity, while again varying whether 

the middle option is offered.  Finally, the 11 and 101-point scales keep the neutral option but allow for 

finer and much finer intensity variations, respectively.  Although other scale lengths are found in survey 

research (most notably, also 9, 10, and 21), these seem to be the most common.  Our experiments use the 

same scale length variations.  

 In mapping their actual responses to scale points, we assume that people make choices following 

the proximity logic that underlies most spatial models: they choose the point on the scale that is closest to 

their own.4  Our procedure assumes that a scale offering k points breaks the 0-100 continuum into k ranges, 

each of which is bisected by a midpoint that equals a response option on the scale.  Thus, for example, a 2-

point scale breaks the continuum into two ranges: 0-50, and 51-100, with midpoints of 25 and 75, 

respectively. If asked to respond on a 2-point scale, anybody with a response less than 50 would choose the 

first option and receive an observed score of 25, while anyone with a response greater than 50 would choose 

the second option and be scored as 75.5  

A plausible alternative to this scoring of the response options is one that anchors the options to 

the end-points of the scale but otherwise divides the scale into equal intervals.  This would yield scores of 

0 and 100 for the 2-point scale, 0, 50, 100 for the 3-point scale, and so on up to the 101-point scale, which 

would be scored using 101 integers. Fortunately, the choice of one or another of these scoring methods is 

irrelevant to many results concerning the properties of the scales, as the two scoring methods are linear 

transformations of one another.  The choice does, however, matter to some calculated quantities, such as 

the observed error variance of the scale, which should be kept in mind.6   

                                                 
4 This mapping rule ignores the possibility of response sets, such as a systematic tendency toward picking less (or 
more) extreme options, or reporting a positive attitude when one's true position is neutral, or simply gravitating 
toward a given point on a scale (e.g., the mid-point), perhaps over and over in a battery (Krosnick and Presser 2010, 
Podsakoff et al. 2003, Pasek and Krosnick 2010). We do consider response sets in the experimental analysis. 
5 The full set of observed scores are as follows (but multiplied by 100): 2-point scale: 1/4, 3/4; 3-point scale: 1/6, 
3/6, 5/6; 4-point scale: 1/8, 3/8, 5/8, 7/8; 5-point scale: 1/10, 3/10, 5/10, 7/10, 9/10; 7-point scale:  1/14, 3/14, 5/14, 
7/14, 9/14, 11/14, 13/14; 11-point scale:  1/22, 3/22, 5/22, 7/22, 9/22, 11/22, 13/22, 15/22, 17/22, 19/22; 101-point 
scale: 1/202, 3/202, …, 101/202, …, 199/202, 201/202. 
6 As is evident, we assume that all scales are measured at the interval level, which accords with our sense of what 
most analysts do. Some researchers have addressed the scale length question by considering coarse measures as 
yielding ordinal data compared to the interval data of an uncoarsened scale.  Cicchetti, Shoinralter and Tyrer (1985) 
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 The key virtue of the approach taken in these simulations is that it distinguishes two ways that a 

discrepancy between a true score and an observed score could arise: (1) because response sampling, 

judgmental uncertainty, and/or measurement error lead an actual response to deviate from the true score, 

and (2) because actual responses have to be mapped onto the scale options supplied. This allows us to 

explore consequences of each of these errors, separately and together. We will refer to the first as random 

error, and to the second as rounding error. 

 If we assume no error of the first type, such that true-scores=actual scores, the differences 

obtained across scales are entirely due to rounding error.  If so, the consequences of measuring a variable 

in a coarser manner than the underlying variable are equivalent to the consequences of collapsing a well-

measured continuous variable.  This brings two problems that are rarely considered together—collapsing 

vs. measuring coarsely in the first place—into the same conversation.  Estimation biases and power 

limitations that come from the collapsing of continuous measures (see, e.g., Owen and Froman 2005, 

Shively 1998, ch. 5) are the same as those that can arise due to coarse measurement in the first place (see, 

e.g., Brudvig 2007, Krieg 1999). 

Since the more reasonable expectation is that actual responses will, in fact, deviate from true 

scores, the question that then arises is whether rounding error can actually end up improving our 

measurement and analysis. The idea that rounding could help can be illustrated with a simple example.  

Suppose an individual's true score is 70 and her observed score (adding a random error) is 75.  If she is 

asked to respond on a 101 point scale she will respond with 75, yielding an observed score that deviates 

by 5 points from her true score.  If she is asked to respond on a 2-point scale, she will also respond 75, 

with the same error.  But if she has the option of a 5-point scale, she will choose 70 (over 50 or 90), 

resulting in an overall error of 0.  The rounding error, in this case, erases the random error. Examples like 

this raise the possibility that coarse scales may not be problematic even if true scores vary continuously.   

                                                 
do so when simulating the choice of a scale length, while Srinivasan and Basu (1989) do so when considering the 
consequences of collapsing a continuous measure. 
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 We begin by considering what the simulations reveal about the reliability of variously coarsened 

scales. Following classical test theory, an error in measurement is the difference between the observed 

score and the true score. In our simulations, this error is the sum of the random error component and the 

rounding error component.  Reliability, in turn, is the squared correlation of the true and observed scores.  

If there is no random error in a measure, only rounding error, coarsened scales are doomed to be less 

reliable than uncoarsened (or less coarsened) scales due to the fact that there is unmeasured heterogeneity 

in true scores among those obtaining the same observed score.7  Whereas reliability would be perfect for 

the uncoarsened scale, it would drop as the number of scale points diminishes and the rounding error 

grows.  Our simulations will illustrate this case. 

The more interesting question is how reliability levels change across variously coarsened scales 

as random error is also entered into the equation.  Here, it is useful to remember that reliability is not only 

equal to the squared correlation of the true and observed scores, but is also equal to the ratio of two 

variances:  

Reliability = variance of true scores/variance of [true scores plus error] 

 On the one hand, rounding error will reduce the true variation in coarsened relative to uncoarsened (or 

less coarsened) scales.  On the other hand, the fact that random errors can be diminished by rounding 

means that coarsened scales may not suffer as great a reliability loss as uncoarsened scales once random 

errors are present; i.e., a coarsened scale's smaller true variance may be more than compensated by its 

smaller error variance. We evaluate whether under the conditions of our simulations we are ever better off 

reliability-wise when opting for coarsened scales. 

We also demonstrate that the standard test-retest strategy of assessing reliability can be 

misleading when coarsened scales are used. In the hypothetical world in which no error is random and all 

error comes from rounding, test-retest reliabilities would always equal 1. That is because a deterministic 

rule is leading directly from a true score to an observed score (the rule dictated by our spatial proximity 

                                                 
7 Reliability is also equal to the eta-squared from a one-way analysis of variance with the true scores serving as Y 
and the coarsened scale scores serving as X. 
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logic). If the process of measurement were repeated, the same true and observed scores would show up 

again and again. But, of course, those observed scores are rounding error-ridden, and the true reliability of 

the measure is less than 1. We show that test-retest correlations based on coarsened measures will tend to 

overestimate the true reliability even when random error is introduced, though the extent of the bias 

dwindles as the random error variance increases.8 

 After presenting the reliability results of the core simulations, we turn to two important variations. 

Each variation speaks to an important idea in the literature on coarsened measures.  The first allows for 

the possibility that random errors in response become larger in magnitude as the number of scale points 

increases.  This reflects the idea that longer scales are more difficult scales for survey respondents to use, 

which has the consequence of introducing more noise into our measurement (Krosnick and Fabrigar 1997, 

esp. pp. 144-145, Krosnick and Presser 2010, esp. pp. 269-271).  The second variation allows for the 

possibility that true scores fall only along a select number of discrete points along the 0-100 real number 

line; i.e., that attitudes are fundamentally discrete, not continuous, variables.  This is an idea with a long 

heritage within the survey research field, fueled by early work suggesting that people could only 

differentiate about 7 degrees of difference when characterizing external stimuli, if not themselves (Miller 

1956), and the regular finding that people do not use all of the points available on very fine-grained scales 

(e.g., Ferrando 2003; for further ideas and references along these lines, see Krosnick and Presser 2010, 

Schaeffer and Presser 2003).  This variation of the simulation allows us to represent the rather obvious 

problem of what happens if we present respondents with more scale points than they are capable of 

discriminating.9 

                                                 
8 We have not found anyone making this point in the literature on scale length.  It is, however, well known that test-
retest correlations are biased if the errors are correlated (e.g., Blok and Saris, 1984), and correlated errors are 
responsible for the upward bias in test-retest correlations when using coarsened measures, given our simulation set-
up.   Scholars have also shown via simulations and proofs that, certain assumptions given, the correlation of two 
different coarsened variables will be biased toward zero (e.g., Bollen and Barb 1981, Krieg 1999).  
9 Notice that we have already represented this idea in a different fashion, specifying that people can identify an 
interval on a continuum in which their true opinion lies but not a precise point.  Unlike the discrete model, this still 
allows for a continuous range of true values. 
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 After using the simulations to illustrate how the coarseness of a scale affects its reliability we turn 

to how coarseness affects a measure's validity. Here, the focus is on the extent to which coarsened scales 

contain systematic errors in measurement—errors that, in expectation, are non-zero—and what that 

entails for the estimation of causal effects. We first use the simulations to illustrate the properties of 

rounding error as it varies by scale length, demonstrating how rounding introduces systematic errors in 

measurement that are correlated with true scores.  We then show how this validity problem with 

coarsened scales biases estimation of causal effects.  In the interests of space, we focus on how analysts 

will get misleading answers when estimating how an experimental X affects attitudes measured too 

coarsely.  However, the reliability and validity problems with coarsened scales will also confound 

inferences when estimating the effects of attitudinal Xs on other dependent variables. 

Simulation Results: Reliability 

 Figures 1a-1d report two sets of results from the four sets of simulations.10 Each simulation was 

run with a sample size of 1,000 observations, and was replicated 1,000 times.  Averages across the 1,000 

replications are presented in the figures.  The top panel depicts true reliabilities (the squared correlation of 

true scores with observed scores) as well as test-retest reliabilities (the squared correlation of two sets of 

observed scores obtained under conditions of repeated measurement).  The bottom panels depict error 

variances, where an error is defined as the difference between the true score and the observed score.  As 

discussed earlier, the magnitude of this error for any one case in any given simulation is the sum of 

random error and rounding error. 

 A first finding of significance is that reliability is always a monotonically increasing function of 

the length of the scale.  In no case does reliability drop as the number of response options grows.11  This 

is so even when the error variance of the most fine-grained scale—the 101 point scale—comes to exceed 

                                                 
10 True scores are normal or uniform, each with normal or uniform random errors, as described earlier. 
11 It is worth pointing out, however, that this is not what one finds unless one censors the data.  If the simulations are 
run without censoring at 0 and 100, reliability tends to decline as one moves from an 11-point scale to a 101-point 
scale if there is a large amount of random error in the measurement. In this case the reliability dips when moving 
from the 11-point to the 101-point scale because the greater variation in true scores is more than offset by the greater 
error variation. 
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that of the coarser 11-point, as it does in each simulation that models the random error as coming from 

normal distributions with large variances (SDs of 20 or 25). For example, in Figure 1a, the error variance 

for the 101-point scale (515) exceeds that evident for all of the other scales except the 2-point scale when 

the random error variance is large (SD=25).  As discussed earlier, this occurs because the 101-point scale 

does not benefit from rounding error to the extent that coarsened scales do, which can (and in this case, 

does) work to reduce the error variance in the coarser measures overall.  Still, the reliability of the 101-

point scale never suffers in comparison to the coarser scale because the greater error variance is more than 

compensated for by the greater true variance that is captured by the more fine-grained measure. 

 To say that the reliability never dips down when moving to a longer scale is not to say that the 

reliability gains from more fine-grained measures are always of great significance.  Several finding in this 

respect are worth noting.  First, the smaller the quantity of random error in the data the more one gains 

from using fine-grained measures.  Thus, for example, differences in the reliability of the 5-point and 

101-point scale are more substantial when the error SD is 5 or 10 in figures 1a and 1c than when it is 

double that or more.   Put in terms of our earlier discussion about the sources of random error in 

measures, the implication is that fine-grained measures are more desirable when assessing attitudes that 

individuals hold with more certainty or that are sufficiently crystallized so as to show little variation as a 

result of the sampling of different considerations. Fine-grained measures would also be especially 

valuable if used in settings where measurement error can be minimized by, say, reducing respondent 

anxiety, fatigue, and distraction.  While not surprising, the idea that fine-grained measures are especially 

valuable for some attitudes and if obtained in some measurement contexts is important and yet absent 

from much of the scholarly conversation about scale length.12 

                                                 
12 That point should not be overstated, however, as the most fine-grained measure consistently outperforms the 
others when the random error is modeled as uniform (Figures 1b and 1d), regardless of the magnitude of the error 
variance.  This is because the errors under the uniform assumption are strictly bounded, and cannot take on the 
extreme values that are possible under the assumption that errors follow a normal. Observations with extreme errors 
are high leverage observations where reliability is concerned. 
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 Second, by far the poorest reliability showings are found for the 2-point and 3-point scales 

(especially the 2-point scale) in each of the simulations.  The gap in reliability between the 2-point scale 

and those of middling coarseness (e.g., 5 or 7-point) is always greater than that found when comparing the 

middle-length scales to the 101-point scale, usually by a significant extent. This reflects the non-linear 

way that the true variance captured by the scale grows as the number of categories grows, a finding well-

known from information theory (see, e.g., the discussion in Alwin 1992).13 The power of this feature to 

shape reliability levels is evident from the consistency of this pattern across all of the simulations we 

carried out, regardless of how the other parameters were specified. 

Third, it is useful to compare the scales in terms of how sensitive they are to the quantity of 

random error in the data.  Not surprisingly, the reliability of the 2-point scale is the least responsive to 

variation in random error.  Intuitively put, this is because much of that error, while producing variation in 

actual responses (as defined earlier), is leaving observed scores unchanged.   Whether the magnitude of 

random error is small or large, the fluctuation in people's actual responses is likely to be within regions 

associated with a particular category (e.g., "favorable") rather than across them.  As the number of 

response options increases, random variation in responses becomes more likely to be translated into 

observed variation in responses. Visually, one sees this in the fact that the reliability levels are more 

spread out on the right hand side than on the left hand side of Figures 1a-1d. 

 Finally, the consequences for reliability of varying a scale's length is at least matched and usually 

dwarfed by the consequences of variation in random error, at least as we have represented it in these 

simulations.  If that error is induced by fuzzy-thinking or consideration-sampling respondents, the 

solution is not to resort to coarser measures, even if doing so may make matters only a little bit worse.  

Likewise, collapsing a continuous measure is not helpful.  If some of that response instability is, instead 

under one's control—i.e., if it is measurement error, as we have described it—then it is that which should 

be the focus of one's efforts.  Although the options here could include innovative ways of assessing 

                                                 
13 The standard formula is that the scale's information carrying capacity equals log2(number of categories). 
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attitudes or controlling the context of measurement to minimize measurement error in single indicators, 

the most obvious way forward is through the construction of indices that combine parallel measures of the 

same construct to yield more reliable indicators. 

 Two other results from Figures 1a-1d are worthy of note, each of which we mentioned when 

discussing the logic of the simulation set-up.  First, notice that in each of the figures reliability grows with 

scale length (top panel) and error decreases with scale length (bottom panel) even when there is no 

random error in the data (SD=0).  Although this situation is purely hypothetical, it clearly reveals one cost 

of collapsing an otherwise well-measured, continuous measure, which Shively (1998, p. 60) aptly 

described as "the sin of wasting information."   

Another important finding concerns the comparison of test-retest reliabilities with true 

reliabilities (top panels of Figures 1a-1d). As anticipated, test-retest reliabilities overstate the reliability of 

coarsened measures, by definition when there is no random error and only rounding error in the variables, 

but also or especially when the random error in the data is small in magnitude.  In these cases, stability in 

the observed scores across repeated measurement is masking instability in actual (unobserved) scores 

within the regions associated with any given category.  Interestingly, this bias tends to be negligible after 

reaching 5 categories and to diminish sharply as random error grows. This finding may be of particular 

relevance to debates regarding the measurement of democracy, despite being generated by simulations 

designed to speak to the measurement of attitudes.  The value of dichotomous vs. more fine-grained 

measures of democracy is a vibrant topic of debate, in which reliability assessments play no small role 

(see, e.g., Elkins 2000). 

Figures 2 and 3 report on simulations that, in turn, vary a key assumption of our first set. Whereas 

the earlier simulations assumed that any errors in measurement were constant across scales of varying 

length, those yielding the results in Figure 2 assume that the random error in the 101-point measure is 

greater than that of the coarser (2 through 11-point) scales.  As discussed earlier, many discussions of 

scale length raise the possibility that longer scales might be noisier scales because of the complexity of 

the task that they present to respondents: discerning which of 101 points represents their attitude. Indirect 
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evidence in support of this idea includes the finding that respondents rate the 101-point scale lower than 

coarser scales in terms of ease of use and higher in terms of the time they needed to provide a response 

(though also higher in terms of its ability to allow them to express their feelings, Preston and Coleman 

2000).  More generally, it is common sense to expect different measurement instruments to vary in the 

measurement error they induce.  The Parts Express 390-722 Mini Digital Sound Level Meter (which 

Google prices at $22) probably yields noisier observations than the Extech 407790 Real Time Octave 

Band Analyzer Decibel Sound Meter (which Google prices at $3,799). 

  Our core simulations also built in the assumption that true scores vary continuously along a 

scale bounded at 0 and 100.  What if, however, people are simply not capable of making such fine-

grained distinctions?  As Krosnick and Presser (2010), among others, have pointed out, it is not at all 

clear that people know what to make of differences across a 101-point scale: "[O]nce the number of scale 

points increases above seven, point meanings may become considerably less clear. For example, on 101-

point attitude scales (sometimes called feeling thermometers), what exactly do 76, 77, and 78 mean? Even 

for 11- or 13-point scales, people may be hard pressed to define the meaning of the scale points" (p. 270). 

The simulations reported on in Figure 3 represent the idea that our discriminating powers are more limited 

than that implied by the 101-point scale.  It assumes that true scores vary across the discrete set of 11 

integers on a 0 to 10 scale, rescaled as 0, 10, 20, …, 80, 90, and 100.  Everything else in the set up is the 

same as in the earlier simulations, but in this case the 101-point scale is incapable of improving on the 11-

point scale in terms of the information it conveys.  Any observed score that deviates from 0, 10, 20, …, 

80, 90, or 100 is only adding noise to the data. 

 Not surprisingly, the results presented in Figure 2 and 3 show reliability peaking with the 11-

point scales and declining with the 101-point scale.14  The extra noise induced by the 101-point scale, 

very evident in the bottom panel of Figure 2, outweighs the ability of the 101-point scale to capture more 

true variability in scores, leading it to suffer in a reliability comparison with coarser scales, consistently.  

                                                 
14 To simplify, we just present one set of true score and random error distributions in these simulations, as described 
in the figure titles. 
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In Figure 3, the fact that the 101-point scale differs only from the 11-point scale in its ability to pick up 

noise means it is consistently more troubled by random error variance than is the 11-point scale (bottom 

panel) and is never more reliable than the 11-point alternative (top panel).  In contrast to what we see in 

Figure 2, however, here the reliability disadvantage of the longer scale diminishes as the randomness in 

the responses increases.  In all other respects the results from simulations depicted in Figure 2 and 3 

support the conclusions drawn from those described in Figures 1a-1d. 

 The value of these simulations can be found in their ability to discipline our thinking about how 

and why reliability may vary with the coarseness of a scale in a single-item measure of an attitude.  

Whether there are any lessons to be drawn for practice is less clear.  Even if one wished to choose a scale 

length solely on the basis of its reliability—which would be a mistake—it remains an open question as to 

which scale length that would be.  Figures 2 and 3 showed that the 101-point scale could be made to lose 

to the 11-point scale in a reliability contest under fairly plausible assumptions, even though the 

assumptions underlying the contrary results in Figures 1a-1d were not blatantly far-fetched.  Later we turn 

to an empirical investigation of the question, which may yield a clearer verdict on the matter. 

Simulation Results: Validity and Effect Estimation  

 Although the validity of a measure is not affected by random errors in measurement, it is affected 

by systematic errors in measurement.  The rounding induced by using a coarsened measure—or, 

equivalently, by using a collapsed version of an otherwise continuous measure—will invariably introduce 

systematic error and, hence, lower the validity of the measure.  That systematic error, in turn, will lead to 

biases in the estimation of causal effects and other quantities of interest. Krieg (1999, p. 764) summarized 

the gloomy outlook thusly: "Scale coarseness can affect the mean, variance, covariance, correlation 

coefficient, and the reliability of scores.  Both the numerator and denominator of the correlation 

coefficient can be affected. The biases can vary as a function of the number of scale points and the 

number of items in a scale, as well as the mean and variance of the quantities to be measured. Different 

rules for assigning values to scale points can produce different biases." Our simulations provide a means 
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to illustrate the systematic error introduced by rounding and its consequences for estimation, and pave the 

way for a parallel demonstration based upon an analysis of the experimental data. 

The systematic errors found in coarsened scales are affected by the exact values assigned to the 

scale points.  For these simulations we scored all scales to range from 0 (most conservative/Republican) 

to 100 (most liberal/Democratic), which is comparable to 0-1 coding conventionally used by scholars 

working with attitude measures.  Thus, for example, the 2-point scale took on the values of 0 and 100 

while the 5-point scale took on the values of 0, 25, 50, 75, and 100.   Recall that rounding error is the 

difference between the observed score and the score that would have been obtained without rounding—

the "actual score", which is the sum of the true score plus random error.  Figure 4 shows how the average 

rounding error (on the Y-axis) covaries with true scores (on the X-axis) across scales of varying length.  

This set of results builds in the assumption that true scores follow a uniform distribution over the 0-100 

interval.15 

To understand the patterns that one sees in Figure 4, consider the example of a 2-point scale. True 

scores less than 50 are rounded to code 0 while true scores greater than 50 are rounded to code 100.  This 

generates underestimates of increasing magnitude as true scores range from 0 to 50, and then 

overestimates of decreasing magnitude as true scores range from 50 to 100.  The rare score landing 

exactly at the cutpoint (50) will end up scored either at 0 or at 100, about half the time each. The pattern 

of underestimation followed by overestimation repeats as the scale length (and number of cutpoints) 

grows. The result is that in each case rounding error is positively correlated with true scores, but to a 

diminishing extent as the scale length increases. For the simulations underlying the plots in Figure 4, the 

correlation between the true scores and the rounding errors are .50, .34, .25, .19, .16, .13, .09, and -.00, for 

the 2, 3, 4, 5, 6, 7, 11, and 101-point scales, respectively. 

                                                 
15  The distribution of random errors does not materially affect these results, but this particular set of simulations 
assumed normal random error, SD=5.  The decision about whether or not to censor the data (round observed scores 
below 0 to 0, and scores above 100 to 100) does matter to the details, but not to the general point of these or 
subsequent results.  Here, we did not censor scores.  If we do censor scores then the average rounding error at 0 and 
100 becomes a bit more extreme than that shown in Figure 4. 
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The fact that rounding in Y produces errors that increase with Y means that estimates of causal 

effects will tend to be biased away from zero.16 To illustrate this, we constructed a simulation in which 

true scores were a function of an experimental X (treatment=1 vs. control=0).  We specified an effect size 

of 30, centering the distributions of true scores on 50 (with the treatment group centered at 65 and the 

control group centered at 35).  As usual, we added random error to the true scores (normally or uniformly 

distributed, with a variable SD) to yield actual scores, and then rounded the actual scores to scales of 2, 3, 

4, 5, 6, 7, 11, and 101 points.  We then regressed Y on X for each of our 1000 samples (n=1000 each).  

The average of the unstandardized regression coefficients are shown in Figure 5. As the figure shows, the 

coefficients obtained when analyzing coarsened scales will tend to overestimate the causal effect, with the 

extent of the bias diminishing as the scale lengthens and the quantity of rounding error diminishes.17 In 

these results the bias is minimal when rounding to an 11-point scale. 

These simulations build in the assumption that true scores vary continuously, but what if true 

scores only vary discretely, perhaps along an 11-point scale, as discussed above?  Two points are 

important.  First, if true scores fall along an 11-point scale, then using a coarser scale (e.g., 5 or 7 points) 

will have the negative consequences we have already discussed.  Second, if one makes the mistake of 

using a more fine-grained scale, like the 101-point scale, then that will certainly have the effect of 

introducing more noise into your measure.  But it should not result in more systematic measurement error; 

certainly, none of the rounding error problems we have discussed are introduced.  As such, erring in the 

direction of too fine a measure is the lesser sin.18 

                                                 
16 Alternative coding schemes produce systematic rounding error that can bias estimates in other ways. For instance, 
coding items to the midpoint of the range for each scale segment, rather than fully to the ends of the 0-100 scale, 
will produce rounding error that biases estimates of causal effects towards zero.  In this case, rounding errors are 
negatively correlated with true scores. 
17 Bias in the coefficients depends on where the true scores of treatment and control subjects fall relative to the 
cutpoint that determines how scores are rounded.  That is why the estimated effect sizes fluctuate rather than shift 
monotonically as scale length increases. For the 5-point scale, when random error is minimal, most of the control  
and treatment subjects get assigned to option 2 (scored 25) and option 4 (scored 75), respectively, which yields an 
estimated coefficient close to 50.  By contrast, for the 4 point scale most of the control subjects choose option 2 
(score 33.3) while most of the treatment subjects choose option 3 (score 66.7), which yields an estimated coefficient 
closer to 33.3.  This kind of dynamic affects the simulated results and, presumably, actual ones as well. 
18 Given space limitations, we cannot provide a detailed assessment of how scale length affects inferences when 
attitudes serve as an independent variable.  However, the reliability and validity problems with coarsened scales that 
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Experimental Study Design 

We fielded a two-wave survey on Amazon’s Mechanical Turk in October, 2013. A total of 1676 

respondents completed the first wave, while 1346 completed both the first and second wave, resulting in a 

successful recontact rate of 80.3%. Respondents were compensated $0.25 for completing the first survey 

and $0.50 for completing the second. When to field the second wave of a test-retest survey is always an 

important design question. The goal is to let enough time pass so that respondents will not remember their 

wave 1 responses and yet not so much time that true change is expected to have occurred between waves. 

One to three weeks between waves has been recommended in the literature.  We recontacted all 

respondents approximately 8 days after they completed the first survey. Reminder emails were sent every 

48 hours if the respondents had not yet completed the follow-up. Overall, 95% of wave 2 responses were 

provided by 14 days after the initial survey. 

The sample of respondents looks similar to most Mechanical Turk (MTurk) samples (Berinsky et 

al. 2012, Buhrmester et al. 2011, Mason and Suri 2011). Table 1 describes its composition on select 

political and demographic variables. Overall, the sample was young (average age=32), 58% male, and 

75% white.  Democrats and Liberals outnumbered their counterparts on the right by a ratio of about 2 to 

1.  Only about 30% reported having cast a vote in the 2012 presidential election, which no doubt reflects 

the youthful quality of the sample as well as the respondents' mild level of interest in politics (only 26% 

said they follow politics most of the time).   

Working with this MTurk sample means that our test-retest correlations are probably lower than 

they would be with a representative sample of the U.S., because the attitudes of young people tend to be 

less crystallized (Sears 1986).  Also relevant to the generalizability of the study's findings is the fact that 

the field period coincided with the federal government shutdown (October 1-October 16, 2013) and its 

aftermath.  This turmoil may have encouraged more true attitude change than we would see in a more 

                                                 
we have identified will also thwart valid inference in that context. One difference between the two is that both 
random and systematic error in attitude measures will bias causal inferences when they serve as independent 
variables, while only systematic error will bias causal inferences when they serve as dependent variables. 
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placid period.19  Such changes, which will be regarded as errors in a test-retest analysis, are more likely to 

be felt in more fine-grained measures, as our simulations have demonstrated.  Thus, the differences in 

test-retest reliabilities by scale length may be attenuated relative to what one would find in a different 

context.   

Survey respondents were randomly assigned in wave 1 of the survey to receive one of twelve 

different attitudinal scale formats. These scales were repeated in the second wave of the experiment so 

that test-retest reliability could be calculated for all respondents on identical scale formats.  Table 2 lists 

the various scale formats included in the study as well as the number of respondents in each condition. 

The Appendix provides the exact visual layout of each of the scale formats. The scales varied in length (2, 

3, 4, 5, 6, 7, 11, and 101 points), the number and wording of labels, and the response format (radial vs. 

slider vs. feeling thermometer).  

Our focus in the analysis to come is on a subset of the conditions that allow for the cleanest 

comparisons, those that contrast the 11-point and 101-point sliders to the 2, 3, 4, 5, 6, and 7-point scales.  

The 2-7 point scales had 2-7 labels, respectively, while the 11 and 101-point sliders provided verbal labels 

for the endpoints and middle-position that match those used for the 3, 5, and 7 point scales (very 

unfavorable, very favorable, neither favorable nor unfavorable), while also providing eleven numerical 

labels—0, 1, 2,…8, 9, 10 (11-point) or 0, 10, 20, …80, 90, 100 (101-point).  We also consider the 

consequences of including or excluding a middle option, focusing here on the 3-point vs. 2-point scale, 

the 5-point vs. the 4-point scale, and the 7-point vs. the 6-point scale.20  

                                                 
19 Across the 16 political targets included in the survey (detailed below), there were 5 statistically significant 
differences in means across waves (p < .05). These targets—John Boehner, Paul Ryan, the Tea Party, Republicans, 
and Conservatives—all were rated more negatively in wave 2. However, the largest substantive difference, for John 
Boehner, was only -0.035 (with scales coded 0-1), only 3.5% of the scale’s length. 
20 Thus, 4 of the 12 experimental conditions/scale formats do not figure into the comparisons we discuss. We 
exclude the 11-point radial scale because while it can be compared to the 11-point slider and to the 2 through 7-point 
radial scales, we have no radial version of the 101-point scale.  We exclude the 101-point slider with 7 labels 
because the only clean comparison is with the 7-point scale with 7 labels.  We exclude the 3 and 7-label feeling 
thermometer scales—which showed respondents the thermometer graphic used by the American National Election 
Studies and asked them to supply a number indicating their response—because these conditions can only be cleanly 
compared to the 101-point sliders.   
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The survey instrument in both waves was identical, except for the fact that we included more 

demographic questions in the wave 1 survey. Respondents were asked to provide their attitudes towards 

24 different targets, presented in three batteries of 8 each. One battery asked about 8 celebrities,21 chosen 

to vary in their notoriety as well as in their presumed partisan affiliation. Eight of the targets were 

individual political figures,22 four Democrat, four Republican, and varied in prominence. The remaining 

eight of these targets were political groups,23 with four typically aligned with the Republican party and 

four typically aligned with Democrats. 

To keep any order effects constant across waves, respondents always completed the celebrity 

battery first, then the political figure battery, and then the political groups battery. The order of targets 

within each battery was randomized and then held constant across both waves.  The survey also include 

measures of celebrity knowledge and political knowledge, interest in each of these domains, party 

identification, ideological self-identification, and 2012 vote choice. 

The strategy of gauging attitudes toward a large and diverse set of political and non-political 

figures means that the data can either be analyzed item-by-item or can be stacked and analyzed as a 

whole.  To clarify this difference, assume for the moment that we had just 1000 2-wave responses.  With 

the data arranged to provide wave 1 and wave 2 variables (columns) for each of our 1000 cases (rows), 

we could provide 24 test-retest correlations for each of the 8 scale length/experimental conditions of 

interest (2, 3, 4, 5, 6, 7, 11, and 101), and average some or all of the results.  Alternatively, we could stack 

the data so that we have two variables, wave1 and wave 2 attitude responses (columns), and 24,000 

observations (rows).  With this dataset structure we would simply calculate the wave-1-wave-2 

correlations for each of the 8 experimental groups.24  While stacking overstates the number of 

                                                 
21 Lindsay Lohan, Ben Affleck, Meryl Streep, Rosie O’Donnell, Jay-Z, Tina Fey, Justin Bieber, and Clint Eastwood. 
22 John Boehner, Bill Clinton, George W. Bush, Joe Biden, Nancy Pelosi, Barack Obama, Paul Ryan, and Mitt 
Romney. 
23 Democrats, Gays & Lesbians, Labor Unions, Tea Party, Big Business, Republicans, Conservatives, and Liberals. 
24 Item fixed effects need to be included.  Without item fixed effects, test-retest correlations will be inflated to the 
extent that there are stable mean differences across items.  Even if T1 and T2 responses were perfectly uncorrelated 
for each item, we would observe a positive test-retest correlation within the stacked data. 
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independent observations we have, which matters for statistical significance testing, that can be accounted 

for at the analysis stage.  More importantly, stacking has two virtues.  First, it diminishes the skew in the 

frequency distributions, which is valuable since skew attenuates test-retest (Pearson) correlations, 

especially with coarse measures (Wylie 1976).  Second, with stacked data one can take into account 

certain kinds of response sets with models that incorporate individual-level fixed effects.  We analyze the 

data both ways in what follows. 

Experimental Results:  Descriptive Statistics and Response Times 

Figures 6a and 6b provide descriptive statistics on the 24 attitude measures in the survey, broken 

down by scale length (2, 3, 4, 5, 6, 7, 11, or 101).  All scales were recoded to the 0-1 interval, with 1 

indicating high favorability. The targets are rank ordered based on the mean (Figure 6a) and standard 

deviation (Figure 6b) of the ratings, averaged across the two survey waves. 

Respondents varied quite dramatically in their favorability towards the various celebrity and 

political targets. Not surprising in light of the Democratic leanings of our sample, Democratic targets are 

rated more favorably than Republican targets. However, the top- and bottom-rated targets across most 

scale lengths are celebrities (Tina Fey and Justin Bieber, respectively). As the scale lengthens, the means 

gravitate towards the center across all targets. However, they do not do so monotonically—as middle 

options are added and taken away, the means shift slightly up and down, reflecting the ability for 

respondents to record their attitude at the midpoint.  More polarizing and well-known figures such as 

Barack Obama record the highest standard deviations, while a number of celebrities found at the bottom 

of figure 6b record the lowest, as they are nearly universally liked or disliked by the MTurk respondents.  

The standard deviations of political targets are highest in the 2 and 3 point scales, as fewer options results 

in a more polarized distribution, given our 0 to 1 scaling. 

Respondents were timed as they recorded their favorability ratings of the targets. Figure 7 records 

the average amount of time respondents spent answering the questions in the two political attitude 

batteries. The data show a strong, positive relationship between scale length and the time respondents 

spent determining and recording their attitudes.  Of note is the relatively little variation in response time 
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by type of target (politicians, groups).  Averaging across all 16 items and both waves, the time spent 

ranged from 17.3 seconds (2.2 seconds per question) for the 2-point scale to 29.5 seconds (3.7 seconds 

per question) for the 101-point scale.  The biggest jumps in time taken occurred when moving from the 2 

to the 3-point scale (2.7 seconds for the battery), from the 7 to the 11-point scale (2.3 seconds), and from 

the 11 to the 101-point scale (3.2 seconds).  While this hearty relationship seems to suggest that 

respondents are taking their task seriously, spending more time when asked to provide a more discerning 

assessment, it cannot tell us whether the extra time taken with longer scales levels the measurement error 

playing field across lengths.  

Figure 8 shows response-time results for the high and low political knowledge halves of the 

sample.25 Notably, and as one would expect, high knowledge respondents tended to take more time 

reporting their attitudes across all scale lengths.  However, the biggest gaps between the high and low 

knowledge groups are found for the 11 and 101-point scales.  The differences average out to 4.4 seconds 

for those two scales, compared to 2.0 seconds for the six coarser scales.  Low information respondents 

could be less comfortable making fine-grained judgments than high information respondents, and thus 

quickly gravitate to simple benchmarks, like the scale mid-point (which they do populate much more 

frequently), or simply be more frustrated with the task's difficulty and thus make less effort (Krosnick and 

Presser 2010).26 

 Experimental Results: Test-Retest Reliability Coefficients  

Of primary interest to us is how the test-retest reliabilities vary by the length of the scale.  Figure 

9 presents these results for the full sample, both when analyzing the stacked data and when simply 

averaging the 24 test-retest coefficients calculated from the un-stacked data (labeled "Averaging" in 

Figure 9). A first point to make is that the stacked correlations are slightly higher than the average un-

                                                 
25 The political knowledge scale consisted of five factual questions about politics, displayed in the Appendix. The 
average number of correct answers was 3.2.  High knowledge respondents are those who answered three or more 
correctly, while low knowledge respondents are those who answered two or fewer correctly. 
26 Funke, Reips, and Thomas (2011) did not vary scale length, but found that less educated respondents were 
especially likely to have trouble with sliders compared to scales with radial buttons. 
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stacked correlations, as expected, but the pattern of variation across scale length is the same in the two 

instances.  A second point is that the differences by scale length are small in magnitude, with reliabilities 

ranging from a low of about .74 (for the 2-point scale) to a high of about .84 (for the 11-point scale).  As 

we have already argued, however, the observed test-retest results will overstate the true reliability of the 

most coarsened scales, so the actual difference in reliability across scale length is greater than these 

results signify. 

 The most important result in Figure 9 is the relatively poor performance of the 101-point scale—a 

slider with three labels and 11 numerical labels (0, 10, 20, …, 80, 90, 100)—compared to the 11-point 

scale—also a slider, with the same system of labeling.  Figure 10, which presents the stacked reliability 

results for the 16 political items, separately for high and low knowledge subsamples, shows the same 

pattern. Estimated reliability is lower for the low-knowledge group across the board, save for when they 

are responding to the 2-point scale, but the attitude measures are more reliable for both groups when they 

are answering on an 11-point scale than when they are answering on the 101-point scale.  

 The other main pattern in Figures 9 and 10 is that the test-retest reliabilities grow steadily, though 

not quite monotonically, as one moves from 2 to 11 scale points.  Although the observed differences are 

not great, as already noted, there is no evidence in these results that one would be better off, reliability-

wise, by using an attitude scale less than 11 points long.   

 Figure 11 rearranges some of the data to highlight the comparison between the even-length scales 

(2, 4, 6) and their counterparts that offer a middle option (3, 5, 7). Although most of the scholarly 

consternation over the question of whether to use middle options involves Likert scales (see, e.g., Johns 

2005, O’Muircheartaigh, Krosnick and Helic 1999), researchers using rating scales must decide whether 

to offer one.  Unfortunately, our data do not allow us to extend the comparison to 10 vs. 11-point scales, 

but the comparison of 2 vs. 3, 4 vs. 5, and 6 vs. 7 all point in the same direction: excluding a midpoint 

carries the price of a small loss in reliability. 

 Because the study design included multiple attitudinal targets, we can extend the analysis to take 

into account response sets, i.e., the tendency of respondents to use a particular point or range of the scale.  
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Some individuals may repeatedly gravitate toward the mid-point, if one is available.  Others may tend to 

avoid negative evaluations, while still others may embrace them.  We analyzed response sets in two ways.  

In the first, we simply added respondent fixed effects to the models yielding the test-retest reliabilities 

based on the stacked data.  Doing so essentially factors out the mean rating provided by each respondent 

across the 24 different targets prior to calculating the test-retest reliability.  Figure 12 shows the results by 

scale length, with the baseline (no respondent fixed effects) also shown for comparison.27 Not 

surprisingly, the reliability coefficients tend to be (slightly) lower when respondent fixed effects are 

included.  Still, the pattern seen earlier, with the 101-point scale performing worse than the 11-point scale, 

remains. 

 Our second strategy was to try and identify respondents who appeared to be engaging in what 

Krosnick (1991, 1999) calls non-differentiation: failing to give differentiated responses to the different 

items in a battery. Non-differentiation is thought to arise when respondents are giving little thought or 

attention to their responses ("satisficing").  We constructed three alternative measures to classify non-

differentiators, varying the strictness of the classification.  The first identified a respondent as a non-

differentiator if he or she gave the exact same response when evaluating the 8 targets in at least one of the 

three batteries (celebrities, politicians, groups).  The second classified a respondent as a non-differentiator 

if he or she gave the exact same response when evaluating the two targets in one or more of the following 

pairs: Obama and Romney, Clinton and Bush, Democrats and Republicans, Liberals and Conservatives 

(at either wave).  The third classified a respondent as a non-differentiator if his or her response had the 

same valence for the two targets in one or more of those pairs (e.g., both Obama and Romney rated 

positively).   

 Figure 13 reports the rate of non-differentiation by scale length using these measures.  Using the 

strictest measure, non-differentiation rates are very low and tend to decline with scale length.  

Respondents were less likely to give all targets in a battery the same rating when they had 101 points to 

                                                 
27 Another way to specify the model would allow a unique respondent response set—and fixed effect—for each 
battery (celebrities, politicians, political groups).  Doing so yields results that are similar to those given in Figure 12. 
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choose from than when they had 2 or 3 points to choose from. This is what one would expect based solely 

on the number of choices presented to respondents. More interesting are the results obtained when using 

the other two, looser measures of non-differentiation.  In both, non-differentiation rates tend to decline 

with scale length up until the 11-point scale is reached, and then to increase with the 101-point scale. 

Using the strict rule applied to 4 target pairs, non-differentiation rates climb from 32% for the 11-point 

scale to 39% for the 101-point scale.  Using the directional rule applied to 4 target pairs, the rate of non-

differentiation increases from 57% (11-point) to 78% (101-point).  This is further evidence that the 101-

point scale is overly demanding, at least for some respondents. 

 The higher rate of non-differentiation found for the 101-point scale relative to the 11-point scale 

could, in principle, be responsible for its weaker reliability performance.  But, as Figure 14 shows, even 

when we analyze scale reliability separately among differentiators and non-differentiators, the poorer 

performance of the 101-point scale persists.  This figure shows test-retest reliabilities on all 24 items 

(from the stacked data, with item fixed effects) for the two sets of respondents using our strict and 

directional 4-target measures.  It shows, first, that reliabilities are systematically lower among non-

differentiators compared to differentiators.  The lack of attention and effort in responding that led to their 

classification as non-differentiators is equally evident in the greater noise in their responses. At the same 

time, the 101-point scale remains less reliable than the 11-point scale for three of the four groups, 

especially so among the non-differentiators.   

In understanding these reliability results it is useful to refer back to the simulation findings.  

When it comes to the 101-point vs. 11-point scale comparison, it is clear that the greater random error in 

responses to the former outweighs the greater variation in true responses it is able to provide.  This could 

occur because the 101-point instrument itself induces more measurement error into the responses—

because, for example, respondents find it too difficult and time-consuming to complete carefully—as 

illustrated by the Figure 2 simulation.  It could also arise because all or some respondents are incapable of 

making the fine-grained distinctions the 101-point scale enables, as illustrated by the Figure 3 

simulations.  It is not that respondents failed to make use of the many response options that the 101-point 
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scale afforded them, however.  Figure 15 depicts the (stacked) distribution of responses across the 16 

political items for the 11 and 101-point scales, with higher numbers indicating more liberal/Democratic 

responses.  The MTurk respondents readily abandoned the labeled 0, 10, 20, …, 80, 90, 100 options when 

given the opportunity to express a more fine-grained response.  But, giving them that opportunity yielded 

more noise than it did new information. 

Experimental Results: Estimation Biases 

 The study design did not include an experimental X expected to affect our attitudinal responses, 

so we cannot perform an analysis of bias in estimating causal effects that exactly parallels our simulations 

of the same.  However, we can show how the relationship between an observational X and our attitudinal 

measures (Ys) varies by scale length.  Given what the simulations have shown, we would expect the 

association to diminish as the scale lengthens.  Our observational analyses produce exactly this result.  

The estimated "effect" of an observational X diminishes with scale length. 

 Figure 16 shows these results for two observational Xs: a dummy variable indicating whether the 

respondent identified as Democrat (X=1) or not (X=0), and a dummy variable indicating whether the 

respondent identified as liberal (X=1) or not (X=0).  The regression analysis made use of stacked data on 

the 16 political targets, coded to range from 0 (most conservative/Republican response) to 1 (most 

liberal/Democratic response). We ran regressions with each dummy variable in turn, including item fixed 

effects. As the figure shows, the magnitude of the regression coefficients drops by about by about one-

third as the scale moves from being 2-points (coefficients on the order of .35) to 101-points (coefficients 

on the order of .24) in length. 

 Notably, the regression coefficients for the 11-point and 101-point scale are very similar.  What is 

not similar between that pair of scales is the R-squared obtained from each regression, shown in Figure 

17. Although the fit of the regression tends to improve as the scale lengthens from 2 to 11-points (the 

recurring anomaly of the 6-point scale set aside), it then worsens when moving to the 101-point scale.   

This pair of results regarding the 11-point vs. 101-point scale—with comparable "effect" estimates but 

worse fit for the 101-point scale—jives perfectly with our previous conclusions.  There is more noise in 
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the 101-point scale than in the 11-point scale, hence the worse fit obtained when trying to explain it by 

any X.  Yet the two scales are comparable in terms of their systematic error, yielding similar findings 

when estimating how they are affected by that X.28   

 By contrast, the results for the coarser scales contain both larger regression coefficients and lower 

R-squared values than those found for the 11 point scale.  Since the 0 to 1 coding of the attitude measures 

yields rounding errors that are positively correlated with the true scores, as our simulations showed, it 

follows that the regression coefficients for the coarser scales are biased upward.  And since the coarser 

attitude scales are also less reliable, it follows that there is more noise in the regression equation seeking 

to explain them.  Once again, the evidence provides good reason to avoid using coarsened scales. 

Conclusion 

 The simulations we designed and reported on in this paper provide a useful framework for 

understanding the scale length problem, particularly in their partitioning of random error and rounding 

error in survey responses.  They make clear how the well-known, if oft-ignored, problems introduced 

when one collapses a continuous measures coincide with the problems introduced when one opts for a 

coarse measure in the first place. The results reveal both the value and the limits of fine-grained measures. 

Although fine-grained measures are ordinarily superior, in reliability and validity terms, their value 

diminishes if measurement error grows with scale length or if respondents are only able to differentiate 

between a smaller set of points than the scale presents.  In such cases there is nothing to be gained by 

moving to a longer/finer measure.  

 Because of the sensitivity of these conclusions to the underlying assumptions of the simulations, 

we conducted a parallel empirical study that helps clarify the practical effect of choosing different scales 

varying in length.  Attitudes were seemingly quite reliable across scale lengths, with even the 2-point 

scale achieving a test-retest reliability of .74. However, as the simulations demonstrated, test-retest 

correlations overstate the true reliability, particularly for short (2-4 point) scales, which must be taken into 

                                                 
28 The fact that the 101-point scale is less reliable than the 11-point scale is more problematic when attitudes serve 
as X.  As is well-known, random error in X tends to bias effect estimates, attenuating bivariate associations. 
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account when making comparisons.  Our experimental results further showed that while reliability 

steadily increased as the number of scale points grew from 2 to 11, it then decreased among both high and 

low knowledge respondents when moving to a 101-point scale. Non-differentiating, seemingly careless, 

responses were also more likely to appear with the 101-point than with the 11-point scale.  While the 101-

point scale offers a more fine-grained measure, the random error it introduced more than exceeded the 

gain in true variation (if any) that it provided. 

 We are not ready to advise researchers to abandon the 101-point attitude scale in favor of the 11-

point scale.  The costs of employing an unduly coarse measure—in terms of lowered reliability and 

validity, with the associated biases and power limitations in statistical estimation—are too significant.  

The poor showing of the 101-point scale in our study may be anomalous. And as our simulation results 

have suggested, fine-grained measures are more valuable when random error in measurement is limited, 

likely to be the case when people care a lot about the topic or target of the attitude.  The fact that our 

MTurk subjects were unusually low in political engagement may have contributed to the poor showing of 

the 101-point scale.  Likewise, it is too soon to conclude that the 11-point attitude scale should always be 

chosen over the 7-point scale.  Too fine a measure carries its own costs.  We need independent evidence 

confirming these findings based on more diverse samples and taking into account multiple survey modes. 

In the meantime, scholars should err in the direction of seeking more fine-grained rather than less fine-

grained measures.  Although measures that are needlessly coarse and those that are needlessly fine-

grained each have their problems, the latter is not vulnerable to the rounding error that can seriously 

confound inferences. 
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Table 1. Selected Characteristics of Experimental Sample 
 
 

Party ID (with leaners 
in party) 

Democrat Independent Republican     
59.6% 18.0% 21.3%     

Ideology (collapsed to 
3 point) 

Liberal Moderate Conservative     
57.3% 22.9% 18.9%     

Voted in 2012 Yes No       
28.8% 69.2%       

Highest Educational 
Degree 

H. School Associate's Bachelor's Master's Doctorate 
33.9% 15.6% 38.4% 7.2% 2.9% 

 
 
 
 
 
 
 
 
Table 2. Experimental Conditions and Sample Size 
 

Experimental Condition Labels on 
Scale 

Wave 1 
Completions 

Wave 2 
Completions 

Completion 
Rate 

2-point radial 2 147 119 81.0% 
3-point radial 3 138 109 79.0% 
4-point radial 4 145 127 87.6% 
5-point radial 5 130 101 77.7% 
6-point radial 6 123 103 83.7% 
7-point radial 7 154 129 83.8% 

11-point radial 3 145 116 80.0% 
11-point slider scale 3 130 107 82.3% 

101-point slider scale 3 133 109 82.0% 
101-point slider scale 7 137 109 79.6% 

101-point feeling thermometer 3 144 113 78.5% 
101-point feeling thermometer 7 136 105 77.2% 
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Figure 1a: Simulated Results, Normal True, Normal Error 
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Figure 1b: Simulated Results, Normal True, Uniform Error 
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Figure 1c: Simulated Results, Uniform True, Normal Error 
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Figure 1d Simulated Results, Uniform True, Uniform Error 
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Figure 2: Simulated Results (True=N, Error=N) with more Error in the 101-point Scale 
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Figure 3: Simulated Results, True = Peaked,29 Discrete, 11-point Scale, Error=Uniform 

 
 

                                                 
29 Probabilities = {.025,.05,.075,.1,.125,.25,.125,.1,.075,.05,.025} 
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 Figure 4: How Rounding Error Varies by True Scores 
 

 
 
Note: The Y axis is the average rounding error across simulations, where rounding error is the difference 
between the observed score and the "actual score" (true score plus rounding error). Observed scores were 
coded to range from 0 (minimum) to 100 (maximum).  For example, the two point scale was coded 0,100, 
while the three point scale was coded 0, 50, 100. 
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Figure 5: Bias in Causal Effect Estimation Introduced by Rounding Error 
 

 
 

 
 
Note: Entries are unstandardized regression coefficients representing the estimated effect of an 
experimental dummy variable on the attitude measure.  True effect=30. See text for further details.
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Figure 6a: Mean Ratings by Target and Scale Length 
 

 
 
 
 
Figure 6b: Standard Deviations of Ratings by Target and Scale Length 
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Figure 7: Response Times by Battery and Scale Length 

 
 
 
 
Figure 8: Response Times by Political Knowledge and Scale Length 

 
 
Note: Quantities shown average across the 8 politician and 8 group items.
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Figure 9: Test-Retest Reliabilities by Scale Length 
 

 
 
Note: Shown are test-retest correlations averaged across all 24 items ("Averaging") or as given by an 
analysis of the stacked data ("Stacking").  Analyses of the stacked data included item fixed effects. 
 
 
Figure 10: Test-Retest Reliabilities by Political Knowledge and Scale Length 

 
 
Note: The figure shows test-retest correlations obtained from analyses of the stacked data on attitudes 
toward the 16 political targets; analyses included item fixed effects. Results based on averaging the item-
specific reliability coefficients are comparable. See text for details on the classification of respondents 
into low vs. high political knowledge.
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Figure 11: Test-Retest Reliabilities by the Availability of a Middle Alternative 

 
 
Note: Results from analysis of stacked data are shown. These are drawn from Figure 9. 
 
 
 
Figure 12: Test-Retest Reliabilities With and Without Respondent Fixed Effects 
 

0.7

0.75

0.8

0.85

2,3 4,5 6,7

Scale

R
el

ia
bi

lit
y Middle Option

No Middle Option

0.7

0.75

0.8

0.85

0.9

2 3 4 5 6 7 11 101

Number of Scale Points

R
el

ia
bi

lit
y Without Respondent Fixed

Effects
With Respondent Fixed Effects



 45 

Figure 13: Non-differentiation Rates by Scale Length 
 

 
 
Note: Following the "strict rule on four target pairs," non-differentiators are those who gave the same 
score to the two individuals/groups in one or more of these pairs: Obama and Romney, Clinton and Bush, 
Democrats and Republicans, Liberals and Conservatives.  Following the "directional rule on four target 
pairs," non-differentiators are those who gave scores with the same direction (positive or negative) to the 
two individuals/groups in one or more of the pairs. Following the "strict rule on all targets in battery," 
non-differentiators are those who gave the same score to all eight targets in at least one of the three 
batteries (celebrities, politicians, political groups). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 11 101
Number of Scale Points

Pr
op

or
tio

n 
of

 N
on

-d
iff

er
en

tia
to

rs

Directional Rule on Four Target Pairs 

Strict Rule on Four Target Pairs

Strict Rule on All Targets in Battery



 46 

Figure 14: Reliability among Differentiators and Non-Differentiators, by Scale Length 
 

 
 
  
Note: All analyses are based on the stacked data and include item fixed effects. 
 
 
 
Figure 15: Distribution of Ratings on 11-point and 101-point Scales 
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Figure 16: Estimated Effect of Party and Ideology on Partisan Attitudes, by Scale Length 
 

 
 
Note: Entries are unstandardized regression coefficients obtained by regressing partisan attitudes—ratings 
of the 16 political targets, scaled to range from 0 (most liberal/Democratic) to 1 (most 
conservative/Republican—on a dummy variable for Democratic party identification and on a dummy 
variable for liberal self-identification, in turn. Analysis is based on the stacked data and included item 
fixed effects; results are essentially unchanged if we exclude item fixed effects. 
 
 
Figure 17: Fit (R2) from Regression of Partisan Attitudes on Party and Ideology, by Scale Length 
 

 
 
Note: Entries are R-squared values from the regressions described in the note to Figure 16.
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Appendix: Question Wording and Scale Presentation 
 

Attitude Question Wording: 
 
“We're [also] interested in your feelings towards a number of [celebrities OR politicians OR groups] in 
the news. 
  
Please indicate [whether OR the extent to which] you feel favorable or unfavorable toward each of the 
people listed below.”  
 
[Note: Feeling Thermometers have additional instructions, printed below] 
 
Celebrities: 
Lindsay Lohan 
Ben Affleck 
Meryl Streep 
Rosie O’Donnell 
Jay-Z 
Tina Fey 
Justin Bieber 
Clint Eastwood 
 
Politicians: 
John Boehner 
Bill Clinton 
George W. Bush 
Joe Biden 
Nancy Pelosi 
Barack Obama 
Paul Ryan 
Mitt Romney 
 
Groups: 
Democrats 
Gays & Lesbians 
Labor Unions 
Tea Party 
Big Business 
Republicans 
Conservatives 
Liberals 
 
Political Knowledge Scale: 
 
Do you happen to remember which party controls the United States House of Representatives – that is, 
which party has a majority of members in the United States House of Representatives? 
[Answer Choices: Republicans, Democrats, I’m not sure] 
 
Do you happen to remember which party controls the United States Senate – that is, which party has a 
majority of members in the United States Senate? 
[Answer Choices: Republicans, Democrats, I’m not sure] 
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Do you happen to remember what job John Boehner holds? 
[Answer Choices: Speaker of the US House, Governor of Texas, Chief Justice of the US Supreme Court, 
Prime Minister of Canada, Vice President of the United States, I’m not sure] 
 
Do you happen to remember what job John Roberts holds? 
[Answer Choices: Speaker of the US House, Governor of Texas, Chief Justice of the US Supreme Court, 
Prime Minister of Canada, Vice President of the United States, I’m not sure] 
 
For how many years is a member of the United States Senate elected – that is, how many years are there 
in one full term of office for a US Senator? 
[Answer Choices: Two years, Four years, Six years, Eight years, I’m not sure 
 
 
Experimental Conditions: 
 
2-point radial buttons: 
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3-point radial buttons: 
 

 
 
4-point radial buttons: 
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5-point radial buttons: 
 

 
 
6-point radial buttons: 
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7-point radial buttons: 
 

 
 
11-point radial buttons (with three labels): 
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11-point slider scale (with three labels): 
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101-point slider scale (with three labels): 
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101-point slider scale (with seven labels): 
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101-point feeling thermometer (with three labels): 
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101-point feeling thermometer (with seven labels): 
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