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An integrated hydrologic Bayesian multimodel combination

framework: Confronting input, parameter, and model structural

uncertainty in hydrologic prediction

Newsha K. Ajami,1 Qingyun Duan,2 and Soroosh Sorooshian3

Received 20 November 2005; revised 27 August 2006; accepted 19 September 2006; published 9 January 2007.

[1] The conventional treatment of uncertainty in rainfall-runoff modeling primarily
attributes uncertainty in the input-output representation of the model to uncertainty in
the model parameters without explicitly addressing the input, output, and model
structural uncertainties. This paper presents a new framework, the Integrated Bayesian
Uncertainty Estimator (IBUNE), to account for the major uncertainties of hydrologic
rainfall-runoff predictions explicitly. IBUNE distinguishes between the various sources
of uncertainty including parameter, input, and model structural uncertainty. An input
error model in the form of a Gaussian multiplier has been introduced within IBUNE.
These multipliers are assumed to be drawn from an identical distribution with an
unknown mean and variance which were estimated along with other hydrological model
parameters by a Monte Carlo Markov Chain (MCMC) scheme. IBUNE also includes the
Bayesian model averaging (BMA) scheme which is employed to further improve the
prediction skill and address model structural uncertainty using multiple model outputs.
A series of case studies using three rainfall-runoff models to predict the streamflow in
the Leaf River basin, Mississippi, are used to examine the necessity and usefulness of
this technique. The results suggest that ignoring either input forcings error or model
structural uncertainty will lead to unrealistic model simulations and incorrect uncertainty
bounds.

Citation: Ajami, N. K., Q. Duan, and S. Sorooshian (2007), An integrated hydrologic Bayesian multimodel combination framework:

Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403,

doi:10.1029/2005WR004745.

1. Introduction

[2] Various hydrologic rainfall-runoff models have been
used to represent the watershed physical processes which
control the conversion of precipitation into streamflow
and water storage changes. These models include many
parameters describing the properties of the watershed that
need to be estimated through calibration against historical
observation data. For many years, research effort has been
devoted to develop techniques to find the proper estimates
of the parameter values that enable the model predictions to
match the watershed observations. One major weakness of
this parameter-calibration approach is that the objective
function used to calibrate the model parameters implicitly
assumes that all sources of uncertainties in the modeling
process can be attributed to parameter errors. In fact, in
addition to parameter uncertainty, model predictions are
affected by many other uncertainties from various sources,
among them the errors in model input (forcing) data such as

the precipitation observation data, the description of bound-
ary and initial conditions, and the model structural deficien-
cies. Because of the highly nonlinear nature of the
hydrologic system, it is not feasible to account for all these
uncertainties from different sources through model param-
eter adjustments.
[3] Recently, hydrologic research [Beven and Binley,

1992; Kuczera and Parent, 1998; Vrugt et al., 2003;
Marshall et al., 2003; Montanari and Brath, 2004] began
to analyze various uncertainty sources in hydrological
modeling. New techniques have made significant progress
in estimating the propagation of confidence bounds from
different uncertainty sources to the model output. Among
them include the use of data assimilation techniques
to tackle uncertainty in boundary and initial conditions
[Kitanidis and Bras, 1980a, 1980b; Beck, 1987; Evenson,
1992; Miller et al., 1994]; simultaneous data assimilation
and parameter estimation [Moradkhani et al., 2005]; and
simultaneous uncertainty estimation of input (forcing) data
and parameter estimation [Kavetski et al., 2003]. Most of
these studies focus on addressing one or two uncertainty
sources based on a selected hydrologic model. However, by
using a single model, those techniques (which do not
change the model structures) are unable to account for the
errors in model output resulting from the structural defi-
ciencies of the specific model.
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[4] Lately a new scheme has emerged which seeks to
obtain a consensus from a combination of multiple model
predictions so that one model’s output errors can be compen-
sated by others’. The combination techniques can be catego-
rized into two groups. The first group [e.g., Shamseldin
et al., 1997; Abrahart and See, 2002; Georgakakos et al.,
2004; Ajami et al., 2005, 2006] uses a set of deterministic
weights to combine multiple model outputs. Methods of
simple model average (equal weights), linear regression, or
artificial neural network (ANN) belong to this category. The
consensus prediction from these methods is an alternative
deterministic prediction without uncertainty estimates. In
addition, the weights in such combination can take any
arbitrary real (positive or negative) values that lack physical
interpretations.
[5] The second group such as Bayesian model averaging

(BMA) [Madigan et al., 1996; Hoeting et al., 1999] uses
probabilistic techniques which derive the consensus predic-
tion from competing predictions using likelihood measures
as model weights. The likelihood measure (weight) for each
member model is based on the success frequency of the
predictions that an individual model has made within the
observations. For this reason, BMAweights are tied directly
to individual model performance. BMA has been applied in
a variety of fields including statistics, management science,
medicine, and meteorology [e.g., Viallefont et al., 2001;
Fernandez et al., 2001; Raftery et al., 2003, 2005; Wintle
et al., 2003]. In many case studies, the BMA has shown to
produce more accurate and reliable predictions than other
multimodel techniques [George and McCulloch, 1993;
Raftery et al., 1997; Clyde, 1999; Viallefont et al., 2001;
Raftery and Zheng, 2003; Ellison, 2004]. Very recently, the
BMA method was applied to hydrologic groundwater
modeling [Neuman and Wierenga, 2003; Neuman, 2003].
[6] The intend of this study is to build a hybrid frame-

work, Integrated Bayesian Uncertainty Estimator (IBUNE),
to confront the uncertainties in rainfall-runoff predictions
associated with input errors, model parameters estimates,
and model structural deficiencies. To accomplish this
objective, the paper is divided into three major parts. First,
the Shuffled Complex Evolution Metropolis (SCEM) algo-
rithm [Vrugt et al., 2003], which was developed for prob-
abilistic parameter estimation, will be studied. We will
demonstrate that not accounting for existing error in the
input and model structure could lead to corrupted parameter
estimations, as well as unreliable uncertainty bounds on the
model predictions. The second part of the paper presents a
simple approach to extend SCEM to simultaneously account
for the uncertainties originating from both input precipita-
tion data and the model parameters. This is the first step
toward building IBUNE. We will demonstrate that the error
incorporated within the input (forcing) data is one of the
major uncertainty sources in the rainfall-runoff modeling
system, and by accounting for it within our uncertainty
assessment procedure, we will improve the uncertainty
bounds in model prediction. We will also show that not
assessing model structural uncertainty is still an important
limitation of this part of the study.
[7] Finally, the intent of the third part of this paper is to

consider model structural uncertainty in addition to input
and parameter uncertainty. We present a hybrid approach
where we merge the strengths of the Bayesian model

averaging scheme with the extended SCEM. This is the
final step in building the new framework, called IBUNE.
IBUNE further reduces the uncertainties caused by the
deficiencies in individual models by using Bayesian model
averaging, while also accounting for input and parameter
uncertainty within individual models by applying extended
SCEM. Finally, the IBUNE scheme will be applied to a real
case study in the Leaf River basin.

2. Study Basin and Hydrological Models

[8] We have selected the Leaf River basin to demonstrate
the performance of presented frameworks in this study. This
1949-km2 basin is located north of Collins, Mississippi.
Five years of daily historical data (1953–1957), including
precipitation (millimeters per 6 hours), potential evapotrans-
piration (mm/d), and streamflow (m3/s) were used for
calibration and uncertainty assessment. Since many other
studies were conducted over the period of 1953–1957
[Yapo et al., 1998; Gupta et al., 1998; Hogue et al., 2003;
Vrugt et al., 2003], for comparison purposes we selected the
same period for this study. To reduce the sensitivity to initial
state variables, a 365-day (through water year 1952) warm-
up period was used, during which no calibration and
uncertainty estimation was performed for any of the under
study hydrologic models. Three hydrologic models were
selected for this study including the Sacramento soil mois-
ture accounting (SAC-SMA) model [Burnash et al., 1973],
the hydrologic model (HYMOD) [Boyle, 2001], and the
simple water balance (SWB) [Schaake et al., 1996] model.
[9] SAC-SMA is a nonlinear, time-continuous, and con-

ceptual rainfall-runoff model [Burnash et al., 1973] and is
being used operationally by many of the U.S. National
Weather Service River Forecast Centers (NWS-RFC) for
flood forecasting. The model includes two soil moisture
layers, an upper and lower zone (Figure 1). This model
includes 16 parameters, three of which were fixed at
specified values; the remaining 13 parameters need to be
determined through some kind of search process.
[10] Because the Leaf River basin has been studied

extensively for optimization purposes [e.g., Yapo et al.,
1998; Gupta et al., 1998; Thiemann et al., 2001; Hogue
et al., 2003], we have gained a very good knowledge of
what SAC-SMA parameter values should be for this basin.
In order to minimize the interaction between various param-
eters in the SAC-SMA model and hence reduce the com-
plications due to the nonidentifiably problem, which could
cast shadow over the main objectives of this work, the SAC-
SMA model was simplified. First we fixed five percolation
parameters to prespecified values (Table 1). Further, we
maintained the relative values of the parameters associated
with the lower zone and the upper zone. Consequently the
number of parameters in the SAC-SMA model that need to
be identified was decreased to five: upper zone tension
water maximum storage (UZTWM); upper zone free-water
maximum storage (UZFWM); upper zone free-water lateral
depletion rate (UZK); lower zone total maximum storage
(LZTM); and lower zone supplementary free-water deple-
tion rate (LZSK). LZTM represents the summation of all
lower zone storages. The lower zone primary free-water
depletion rate (LZPK) is estimated to be 3% of the lower
zone supplemental free-water depletion rate (LZSK).
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[11] Two simple conceptual rainfall-runoff models were
also used in this study: HYMOD and SWB models. The
HYMOD [Boyle, 2001] consists of a simple rainfall excess
model, which is connected to two series of linear reservoirs
to route surface and subsurface flow (three quick-flow
reservoirs and a single slow-flow reservoir). This model
includes five parameters: Cmax (L) is the maximum storage
capacity in the catchment; bexp (�) is the shape factor of the
main soil-water storage tank that represents the degree of
spatial variability of the soil-moisture capacity within the
catchment; Alpha (�) is the factor distributing flow between

two series of reservoirs; and Rq (T) and Rs (T) are the
residence times of linear quick- and slow-flow reservoirs,
respectively. The schematic of this model is illustrated in
Figure 2. The parameters and their initial uncertainty
bounds are presented in Table 2.
[12] The simple water balance (SWB) model [Schaake et

al., 1996] is a conceptual, parametric water balance model
which is being used as an operational model in the Nile
River forecast center. This model includes two soil layers. A
thin upper layer represents the vegetation canopy and the
soil surface, while a lower layer represents the vegetation

Figure 1. Schematic of the Sacramento soil moisture accounting (SAC-SMA) model [Brazil, 1988].

Table 1. Parameters of the Modified SAC-SMA Model

Parameter Description Prior Range

UZTWM upper zone tension-water capacity, mm 1.00–150.0
UZFWM upper zone free-water capacity, mm 1.00–150.0
UZK upper zone recession coefficient, day�1 0.10–0.5
LZTM total lower zone water capacity, mm 1.00–1000.0
LZSK lower zone supplementary recession coefficient, day�1 0.01–0.25
Percolation and other parameters (not optimized)
ADIMP additional impervious area 0.15
PCTIM impervious fraction of the watershed area 0.025
ZPERC minimum percolation rate coefficient 200.0
PFREE percentage percolating from upper to lower zone free water storage 0.1
REXP exponent of the percolation equation 3.3
RIVA riparian vegetation area 0.01
SIDE ratio of deep recharge to channel base flow 0.0
RSERV fraction of lower-zone free water not transferable to tension water 0.3
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root zone and groundwater system. Five parameters con-
trolling the SWB model processes are Db,max, the maximum
soil-moisture deficit of the bottom layer of the soil; Qmax,
the potential subsurface runoff; b = Qmax/Smax, the ratio of
the lower level posture that produces subsurface flow (Smax

is the minimum threshold that guarantees subsurface flow);
a = Du,max/Db,max, the upper layer deficit proportion (Du,max

is the maximum soil-moisture deficit of the upper layer);
and Kdt, the timescale factor that controls infiltration into the
bottom layer and the surface runoff amount. The schematic
of this model is illustrated in Figure 3. The SWB model
parameters and their initial uncertainty bounds are listed in
Table 3.

3. Traditional Uncertainty Assessment in
Hydrological Modeling

3.1. Derivation of Likelihood Function for Assessment
of Parameter Uncertainty

[13] A typical hydrologic model, M, can be represented
as follows:

y ¼ M ~X ; q
� �

; ð1Þ

where y represents the response matrix of the catchment
(e.g., streamflow), M(�) denotes the nonlinear hydrologic
model, q is a set of model parameters, and ~X stands for the
observed forcing input matrix (e.g., precipitation). In the
traditional approach, the uncertainty in the catchment
response is attributed to parameter estimation uncertainty,
while input and model structural uncertainty is not
addressed explicitly. Assuming that the residuals are
additive,

~y ¼ M ~X ; q
� �

þ e qð Þ: ð2Þ

[14] The Bayesian statistics treats hydrologic model pa-
rameter, q, as probabilistic variables, with the joint posterior
probability distribution P(q j~X ;~y), which presents the prob-
abilistic characteristic of the q conditioned on the observed
data, ~X and ~y. Under Bayes statistics, P(qj~X ;~y) is propor-
tional to the product of likelihood function and the prior
distribution function, P(q). The prior probability density
function explains the information about the q, before any
data are collected. Here we use a noninformative (uniform)
prior over the feasible parameter space (which consists of
realistic upper and lower bound for each of the parameters),
q 2 Q 	 <n.
[15] Assuming that the residuals are additive, indepen-

dent (uncorrelated), and normally distributed noise with
mean equal to zero and constant unknown variance, sy,
Box and Tiao [1973] described the likelihood of parameter
set describing the observed data over the number of time
steps (T) can be estimated as follows:

L q;syj~X ;~y
� �

¼ 1

sT
y

exp � 1

2s2
y

XT
t¼1

e qð Þt
� �2 ! !

: ð3Þ

[16] Further assuming noninformative prior, then P(sy )/
sy
�1, sy can be integrated out of the posterior density yielding

the following expression [Box and Tiao, 1973]:

p qj~X ;~y
� �

/
XT
t¼1

e qð Þt
� �2" #� T

2ð Þ
: ð4Þ

[17] In practice, it is easier to maximize the logarithm of
the likelihood function. It will identify a set of plausible
parameter values given the available observed data. There
are several Bayesian approaches tailored for hydrologic
modeling, including the Generalized Likelihood Uncertainty

Table 2. Parameters of the HYMOD Model and Their Initial Uncertainty Ranges

Parameter Description Prior Range

Cmax maximum storage capacity in catchment, mm 1.0–500.0
bexp factor distributing flow between two series of reservoirs (�) 0.1–2.0
ALPHA shape factor for the main soil water storage tank (�) 0.1–0.990
Rs residence time of linear slow flow reservoirs, days 0.0–0.1
Rq residence time of linear quick flow reservoirs, days 0.1–0.99

Figure 2. Schematic of the hydrologic model (HYMOD) [Wagener et al., 2001].
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Estimation (GLUE) framework [Beven and Binley, 1992]
and the Shuffled Complex Evolution Metropolis (SCEM-
UA) algorithm [Vrugt et al., 2003] that consider model
parameters in equation (1) as probabilistic variables and
estimate their uncertainty bound based on the posterior
pdf. In this study, we will further explore the SCEM-UA
algorithm for estimating model parameters and their associ-
ated uncertainty bounds.

3.2. The Shuffled Complex Evolution Metropolis

[18] The Shuffled Complex Evolution Metropolis
(SCEM) was built upon the principles of the effective and
efficient global optimization technique, the Shuffled Com-
plex Evolution (SCE-UA) developed by Duan et al. [1992].
Vrugt et al. [2003] combined the strengths of the Monte
Carlo Markov Chain (MCMC) sampler with the concept of
complex shuffling from SCE-UA to form an algorithm that
not only provides the most probable parameter set, but also
estimates the uncertainty associated with estimated param-
eters. The main difference between SCEM and SCE is that
the downhill simplex method in SCE was replaced by the
Metropolis-Hastings search algorithm [Metropolis et al.,
1953; Hastings, 1970]. Thus SCEM in every model run is
able to simultaneously identify both the most likely param-
eter set and its associated posterior probability distribution.
SCEM-UA is explained in detail by Vrugt et al. [2003]. The
convergence of the algorithm was monitored using the
Gelman-Rubin criterion [Gelman and Rubin, 1992], which

is a scale reduction score that quantitatively diagnoses if
each parameter converges to a stationary distribution.

3.3. Case Study: Use of SCEM for Calibration and
Uncertainty Assessment of Hydrologic Model
Parameters

[19] In this section we demonstrate the performance and
applicability of SCEM-UA to identify and estimate model
parameters and their associated uncertainty bounds, by
application to three above mentioned hydrologic models:
SAC-SMA [Burnash et al., 1973], HYMOD [Boyle, 2001],
and SWB [Schaake et al., 1996].
[20] Input-forcing data and model structures were as-

sumed perfect in this section, and all of the uncertainty in
the streamflow simulation was attributed to parameter
estimation uncertainty. Uniform prior distributions were
assumed on the parameter ranges of all three models. The
marginal posterior probability distribution for the estimated
SAC-SMA model parameters is given in Figure 4. As we
mentioned earlier, the number of unknown parameters in
this model was reduced to five major parameters. The
distributions are generated using 20,000 samples after the
algorithm converged to the final posterior distribution.
Figure 4 illustrates two points. The first point is that the
posterior distributions for three of the five parameters
(UZTWM, LZTM, and LZSK) are approximately normal;
however, the posterior distribution of UZFWM depicts the
existence of two modes (multimodality). The posterior

Figure 3. Schematic of the simple water balance (SWB) model.

Table 3. Parameters of the SWB Model and Their Initial Uncertainty Ranges

Parameters Description Prior Ranges

Db,max maximum soil moisture deficit of bottom layer of the soil, mm 10.0–800.0
Qmax potential subsurface runoff, mm/d 5.0–100.0
b ratio of the lower level posture that produces subsurface flow (�) 0.1–0.90
a upper layer deficit proportion (�) 0.01–0.5
Kdt timescale factor, days 1.0–20.0
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Figure 4. Marginal posterior probability distribution of the SAC-SMA parameters, using 20,000
samples generated after convergence of the SCEM-UA algorithm.

Figure 5. Streamflow hydrograph prediction uncertainty associated with estimated parameters (shown
in darker gray) for the SAC-SMA model and 95% confidence interval for prediction of observed
streamflow (shown in lighter gray) for water year 1957.
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distribution of UZK is very close to the upper boundary of
the National Weather Service predefined probable parameter
range. This can be an indication of an inherent model
structural uncertainty and/or other sources of uncertainty
within the system which are not being considered here. The
second observation is that the final converged samples for
all the parameters capture only a small space of the
predefined range for the parameters (Table 1). However,
the hydrograph uncertainty bounds (Figure 5) associated
with these parameter ranges do not cover the expected
number of observed streamflow values (dark gray region
in Figure 5). This can be argued as a problem of over-
conditioning the selected relationships between observed
and simulated (modeled) output. The light gray region in
Figure 5 shows the 95% hydrograph prediction uncertainty
associated with the total error in the hydrologic system in
terms of model residuals (calculated based on predictive
variance of SCEM). Even though the 95% total prediction
uncertainty range captures all the observations, it is very
wide compared with uncertainty bounds associated with
parameter uncertainty, revealing a considerable amount of
uncertainty in both the structure of the model under study
and the data used to condition the model.
[21] To further demonstrate the applicability of SCEM,

we used this algorithm to estimate optimal parameter sets
and assess their associated uncertainty boundaries for two
other hydrologic models, HYMOD [Boyle, 2001] and SWB
[Schaake et al., 1996].

[22] The final estimated marginal posterior distributions
of the HYMOD model parameters, after 20,000 samples, are
given in Figure 6. The results reveal that the distributions
for all HYMOD parameters are approximately normal.
These parameter distributions cover a very small range of
predefined parameter ranges. However, in Figure 7 we can
see that even though the algorithm shows high probability
for these parameter sets, the estimated hydrograph predic-
tion uncertainty bounds (dark gray) does not include many
of the observed streamflow values. Similar results are
presented in Figures 8 and 9 for the SWB model.
[23] The examples presented above reveal that attributing

all uncertainties in hydrologic models to model parameters
and ignoring input and model structural uncertainties leads
to an inaccurate, biased, and inconsistent simulation of the
system processes and their associated uncertainty bounds.

4. Extended SCEM-UA to Include the Input
Error Model: Simultaneous Parameter and Input
Uncertainty Estimation

[24] Results from the previous section indicate that deal-
ing only with model parameter uncertainty is not enough to
accurately estimate the true uncertainty in hydrologic sim-
ulation. Uncertainties from other sources must be dealt with
more directly. There have been a few studies in hydrological
modeling that explicitly account for input uncertainty within
the system through input error models. One such approach
is the Bayesian total error analysis (BATEA) by Kavetski et

Figure 6. Marginal posterior probability distribution of the HYMOD parameters, using 20,000 samples
generated after convergence of the SCEM-UA algorithm.
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Figure 7. Streamflow hydrograph prediction uncertainty associated with estimated parameters (shown
in darker gray) for the HYMOD model and 95% confidence interval for prediction of observed
streamflow (shown in lighter gray) for water year 1957 (calibration period).

Figure 8. Marginal posterior probability distribution of the SWB parameters, using 20,000 samples
generated after convergence of the SCEM-UA algorithm.
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al. [2003]. BATEA is one of the few techniques which
explicitly considers input error in the development of the
likelihood function in hydrological modeling. The rainfall
events are predefined and each is given a unique multiply-
ing constant. Theses multipliers allow the pattern of rainfall
as well as the event magnitude to change. Kavetski et al.
[2003] introduced rainfall depth multipliers as some ‘‘latent
variables’’ to the system and introduced an explicit term to
the likelihood function to estimate these variables. If ~rt
represents the true rainfall depth X̂ = [~r1, ~r2,. . .~rt, t = 1:T],
and rt is the observed rainfall depth, their input error model
has the following form:

rj ¼ mj~rj; m � N 1;s2
m

� �
; ð5Þ

where j indicates the storms within the rainfall series and mj

is the random noise from a normal distribution with mean
equal to one and known (prespecified) variance sm

2 in the
form of a multiplier that corrupts the true rainfall depth and
yields the observed rainfall depth. Kavetski et al. [2003]
assumed the rainfall multipliers, mt, as latent variables and
estimated both them and the model parameters through their
probabilistic calibration procedure called BATEA. By
considering the multipliers just for the predefined rainfall
events, they decreased dimensions of the system. Consider-
ing Bayes’ law, and assuming that (1) ~X (observed input)
and ~y (observed catchment response) are statistically
independent because catchment response ~y depends only
on the true input forcing X̂ , not necessarily on observed
forcing, and (2) ~X is statistically independent of q (model
parameter set), because observed input is uncorrelated to the
hydrologic model parameters, Kavetski et al. [2003] derived
the final form of their likelihood function as follows:

p q; X̂ j~X ;~y
� �

/ L ~yjq; X̂
� �

 L X jX̂
� �

 p q; X̂
� �

; ð6Þ

where L(~yjq, X̂ ) is the likelihood of observing ~y given a

parameter set q, and the true input forcing X̂ . L(~X jX̂ ) is the
likelihood based on input error model, and p(q,X̂ )
represents the prior distribution of parameters and true
input forcing.
[25] Kavetski et al. [2003] applied their BATEA frame-

work to a series of synthetic case studies and demonstrated
that considering an input error model explicitly and adding a
new term to the likelihood function can improve the
response surface and assessment of uncertainty bounds.
Nonetheless, even though equation (6) allows the use of
explicit input error models, it has two drawbacks. First, it is
impossible to know what the true input forcing is in a real-
world problem, and therefore it is impossible to assess the
input error model likelihood, L(~X jX̂ ). Second, in some
cases the number of these ‘‘latent variables’’ can increase
considerably and cause some dimensionality issues. To
circumvent these two problems, in this study the input error
model was changed as follows:
[26] 1. Instead of introducing latent variables to the

system, we considered a multiplier in the following form:

~rt ¼ ftrt ; f � N m;s2
m

� �
; ð7Þ

where ft represents a random multiplier at time step t with
mean equal to m, m 2 [0.9,1.1] and variance equal to sm

2 , sm
2

2 [1e � 5,1e � 3]. In this implementation we assume true
rainfall depth ~rt is corrupted at all times by random
multipliers from the identical distribution with unknown
mean, m, and variance, sm

2 . Thus, instead of searching for
every single multiplier as a latent variable, we introduce two
new parameters to the system including mean and variance
of error model multiplier (instead of additive) distribution,
h = {m, sm

2 }. Considering the error term in the form of the
multiplier helps to maintain the heteroscedastic (nonhomo-

Figure 9. Streamflow hydrograph prediction uncertainty associated with estimated parameters (shown
in darker gray) for the SWB model and 95% confidence interval for prediction of observed streamflow
(shown in lighter gray) for water year 1957 (calibration period).
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geneous) nature of the error (higher deviation in higher
rainfall depths) [Sorooshian and Dracup, 1980].
[27] 2. To deal with the issue of not having true obser-

vations of input forcing data, it was decided to integrate the
input error model into the model error term:

e qð Þ ¼ y q; hð Þ � ~y ð8Þ

Therefore the likelihood function will have the following
form:

p q; hj~X ;~y
� �

/ L ~yjq; h; ~X
� �

 p q; hð Þ: ð9Þ

[28] In brief the implemented changes into the hydrologic
input-output system included introduction of a random
multiplier to each time step, drawn from the same normal
distribution with unknown mean and variance (m and sm

2 ).
These two variables of the input error model (mean and
variance of the distribution) were added as two unknown
parameters to the system. The SCEM-UA was used to
estimate the model parameters and input error model
parameters simultaneously. Later the uncertainty associated
with input error model parameters and hydrologic model

parameters were propagated through the system to estimate
associated uncertainty with streamflow simulations and
predictions.

4.1. Case Study: Use of Extended SCEM for
Calibration and Uncertainty Assessment of Hydrologic
Model Parameters and Input Error Model Parameters

[29] By means of a case study, we illustrate the perfor-
mance of the SCEM-UA while considering an input error
model to specify the hydrologic system. Again, we applied
SCEM-UA to calibrate and assess uncertainty bounds for
SAC-SMA, HYMOD, and SWB model parameters along
with input error model parameters on the Leaf River basin.
The idea is to compare the results from this part of the study
to those from section 2.3.
[30] Figure 10 shows the new marginal posterior distri-

bution estimated for each parameter of the SAC-SMA
model while considering an input error model’s first two
moments as two additional parameters in the system, using
SCEM-UA. Looking at Figure 10 and comparing the results
with Figure 4, two observations can be made. One is that
considering input error model, the final estimated marginal
distribution for the model parameters moved over the
possible parameter ranges and assigned the mode of the

Figure 10. Marginal posterior probability distribution of the input error model parameters and the SAC-
SMA model parameters using 20,000 samples generated after convergence of the SCEM-UA algorithm.
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probability distribution to different parameter values. The
second observation is that the mean of the input error model
has a mode different than one. If the input forcing was
correct, the mean of the input error model would concen-
trate around one, and the final marginal distribution of the
parameters would be the same as if we did not account for
input uncertainty. This can also be the indication that the
input error model is somehow compensating for the existing
model structural deficiencies. The estimated uncertainty
bounds for the hydrograph associated with input and model
parameter uncertainty are shown in Figure 11. The 95%
prediction intervals are narrower here compared with the
original case (only considering uncertainty in model param-
eters). This reveals that the final uncertainty bounds asso-
ciated with both input and model parameters are more
accurate and that variance of the residuals at each point is
smaller compared with the original scenario.
[31] These above mentioned results for the SAC-SMA

model are confirmed in Table 4. The observation coverage
for the estimated 95% uncertainty bounds for the simulation
has increased by almost 70% when we account for input
uncertainty. The same results are presented in the table for
the HYMOD and SWB models, which reveals that account-
ing for input uncertainty improved the final streamflow
simulation of these models as well. These results illustrate
that not accounting for input uncertainty can lead to biased
parameter estimates, which are compensating for other
sources of uncertainty. Accounting for input uncertainty
improves the daily root-mean-square (DRMS) error for
all three models across all of their ensembles, as seen in
Figure 12. We can also see that this improvement is more
significant for the SWB and HYMOD models and less
significant for the SAC-SMA model.
[32] One of the important observations from the set of

experiments presented in this section was that the estimated
mean and variance of input error model and their associated

uncertainty bound are different from one hydrological
model to the other one. This is an inevitable result since
we are still ignoring model structural uncertainty. Therefore
all the model parameters as well as input error model
parameter are still compensating for model structural un-
certainty. The next section focuses on this important source
of uncertainty in hydrologic system simulation.

5. Uncertainty Assessment in Hydrological
Modeling: Simultaneous Parameter and Input
and Model Structural Uncertainty Estimation

5.1. Classical Model Structural Error

[33] The dominant approach in hydrological modeling
and streamflow forecasting has been the use of a single
model. However, dependence on a single hydrological
model, which presumably does not adequately represent
all of the physical processes of the watershed well, results in
unreliable, uncertain, and overconfident forecasts. This is
the case even if we account for all other sources of
uncertainty such as parameter estimation and input forcing
uncertainty [Georgakakos et al., 2004]. To date, all of the
approaches set forth to identify model structural inadequacy
focused on a single-model structure and how it can be
improved to more adequately represent the system [e.g.,
Vrugt et al., 2005].
[34] A new kind of approach that has recently emerged to

identify model structural uncertainty is to use multimodel
combination techniques, which provide a better understand-

Figure 11. Streamflow hydrograph prediction uncertainty associated with estimated parameters and input
error model parameters (shown in darker gray) for the SAC-SMA model and 95% confidence interval for
prediction of observed streamflow (shown in lighter gray) for water year 1957 (calibration period).

Table 4. Percentage of Observations Being in 95% Uncertainty

Bounds.

SAC-SMA HYMOD SWB

SCEM (hydrologic model parameters) 15% 10% 5.6%
SCEM (hydrologic + input model parameters) 25% 17% 10%
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ing of the watershed processes by investigating multiple
model structures.

5.2. Bayesian Model Averaging

[35] Bayesian model averaging is a probabilistic scheme
for model combination. It is a coherent technique for
accounting for model structural uncertainty [Madigan et
al., 1996]. Below is a brief description of the essence of the
BMA scheme. Consider a quantity ~y as the observed output
variable to be forecasted and M = [M1, M2, . . .,MK] the set
of all considered models. The pk (yk jMk ,~X , ~y) is the
posterior distribution of yk which represents the quantity
to be forecasted under model Mk, given a discrete data set,
~X (input forcing data) and ~y (observed system processes,
here streamflow). The posterior distribution of the BMA
prediction, ybma, is thus given as

p ybmajM1; . . . ;Mk ; ~X ;~y
� �

¼
XK
k¼1

p Mk j~X ;~y
� �

� pk yk jMk ; ~X ;~y
� �

;

ð10Þ

where p(Mk j~X , ~y) is the posterior probability of model Mk.
This term is also known as the likelihood of modelMk being
the correct model. If we denote wk = p(Mk j~X , ~y), we should
obtain

PK
k¼1 wk = 1. The pk (yk jMk, ~X , ~y) is represented by

the normal distribution with mean equal to the output of
model Mk and standard deviation sk. Suppose that yk is a
prediction made by model Mk. Weights can be estimated
through the expectation-maximization algorithm [Dempster
et al., 1977] which will be discussed in the next section. The
posterior mean and variance of the BMA prediction for
variable ybma are

E ybmajy1 . . . ; yK ; ~X ;~y
	 


¼
XK
k¼1

wkyk ð11Þ

Var ybmajy1 . . . ; yK ; ~X ;~y
	 


¼
XK
k¼1

wk yk �
XK
i¼1

wiyi

 !2

þ s2; ð12Þ

where s2 is the variance of the time series shaped based on
one of the model predictions (ensembles) being the best at
each time step. Suppose if we build a time series that at each

time step includes the best prediction (closest to the
observation) from one of the K models; s2 represents the
variance of such time series considering observations.
[36] In essence, the BMA prediction is the average of

predictions weighted by the likelihood that an individual
model is correct. There are several attractive properties to
the BMA predictions. First, the BMA prediction receives
higher weights from better performing models, as the
likelihood of a model is essentially a measure of the
agreement between the model predictions and the observa-
tions. Second, the BMA variance is a measure of the
uncertainty of the BMA prediction. This measure is a better
description of predictive uncertainty than that in a non-
BMA scheme, which estimates uncertainty based only on
the model ensemble spread (i.e., only the between-model
variance is considered), and consequently results in under-
dispersive predictions [Raftery et al., 2003, 2005].

5.3. Combination of Global Optimization and Bayesian
Multimodel Combination: An Integrated Bayesian
Uncertainty Estimator

[37] Because the Bayesian multimodel combination
framework offers an excellent statistical approach to ac-
count for model structural uncertainty, the BMA framework
was combined with the SCEM-UA to form a hybrid
framework to exploit the strengths of these two techniques
for integrated schemes for quantification of input, parameter
estimation, and model structural uncertainty. This frame-
work should provide a more precise measure of uncertainty
in system simulations. Throughout the remainder of this
paper we will refer to this integrated Bayesian uncertainty
estimator framework as IBUNE.
[38] IBUNE first estimates the two terms in the right-

hand side of equation (10), pk (yk jMk ,~X , ~y) and p(Mk j~X , ~y),
for each model. The pk (yk jMk ,~X , ~y), which represents the
posterior distribution of estimated hydrologic response (e.g.,
streamflow), yk, under model Mk, is directly related to the
input and parameter uncertainty under model Mk, expressed
as follows:

p yk jMk ; ~X ;~y
� �

/ p qk ; hk jMk ; ~X ;~y
� �

: ð13Þ

Figure 12. Distribution of daily root-mean square (DRMS) of SAC-SMA, HYMOD, and SWB
considering only parameter uncertainty compared to parameter and input uncertainty.
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[39] We can substitute the left-hand side of equation (13),
which is the outcome of SCEM-UA, into equation (10)
directly. The first term of equation (10), p(Mkj~X , ~y), which
represents the posterior probability of the model Mk being a
correct model, reflects how well model Mk matches the
observed quantity of interest. To estimate p(Mkj~X , ~y) or as

we mentioned earlier in the previous section wk and s2 (the
variance of the best time series shaped based on one of the
model predictions (ensembles) being the best at each time
step), we used the maximum likelihood approach. The idea
is to estimate wk and s2 by maximizing the likelihood of
occurrence of the observed data, ~y. As we mentioned earlier,

Figure 13. Expectation-maximization (EM) flowchart.
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it is easier to maximize the logarithm of likelihood function,
and therefore we define the logarithm of likelihood function
as follows:

L w1; . . . ;wk ;s2
� �

¼
XT
t¼1

log
XK
k¼1

wk :p ~ytjyktð Þ
 !

: ð14Þ

[40] Because of the high dimensionality of this problem,
it is hard and inefficient to maximize equation (14) through
direct nonlinear maximization methods such as Newston-
Raphson or its variants [Raftery et al., 2003]. In this study,
to approximate equation (14) and estimate the model
weights as Raftery et al. [2003] suggested, we maximized
the equation (14) by performing the expectation-maximiza-
tion technique. All of the conditional densities were de-
scribed as Gaussian distribution for computational
simplicity; however, the BMA scheme can be applied by
assuming other probability distributions. The EM algorithm
is applied to estimate wk and s2 for each model. In brief, the
expectation-maximization [Dempster et al., 1977] algorithm
casts the maximum likelihood problem as a ‘‘missing data’’
problem. The missing data here are introduced as a latent
variable Zk,t that needs to be estimated. If the kth model
ensemble is the best prediction at time t, Zk,t = 1; otherwise
Zk t = 0. At any time t, there is only one Zk,t equal to 1 and
the rest are equal to 0. The EM algorithm starts with an
initial guess for wk and s2 (the variance of the time series
shaped based on one of the models being best at each time
step) and then alternates between the E (or expectation)
step, which estimates Zk,t based on the current value of wk

and s2, and the M (or maximization) step, where new values
for wk and s2 are estimated based on the current value of
Zk,t. The EM algorithm is described in Figure 13. For more
detail description of the EM algorithm, readers are referred
to McLachlan and Krishnan [1997].

[41] After convergence of this algorithm, we will have
specified weights for each model. Therefore equation (10)
can be derived and the posterior mean and variance of the
forecast can be estimated through equations (11) and (12),
respectively.
[42] In brief, the IBUNE framework can be implemented

as follows:
[43] 1. Select the number of hydrologic models.
[44] 2. Assign prior probability to each model (we assume

noninformative prior which gives uniform weights to all of
the models).
[45] 3. Define an input error model.
[46] 4. Obtain posterior distribution of model parameters

and input error model parameters for each model using
SCEM [Vrugt et al., 2003].
[47] 5. Generate a prespecified number of streamflow

ensembles for each model, using probabilistic parameter
estimates obtained from steps 2–4.
[48] 6. Estimate the model weight and variance of each

ensemble member using the EM algorithm [Dempster et al.,
1977].
[49] 7. Compute the model weights by summing the

weights for all ensemble members of each model.
[50] 8. Assess predictive mean and variance using equa-

tions (11) and (12).
[51] A case study on the applicability and robustness of

IBUNE for reliable assessment of predictive uncertainty
propagated through the system from all the important
sources of uncertainty is provided in the next section.

5.4. Use of IBUNE: Uncertainty Assessment of
Hydrologic Model Parameters and Input Error Model
Parameters and Model Structure

[52] The IBUNE scheme promises better assessment of
total uncertainty because it accounts for model parameters,
input, and model structural uncertainty. In this section we
will present the results for IBUNE and compare it with all

Figure 14. Streamflow hydrograph prediction uncertainty associated with estimated parameters and
input error model parameters for all three models for water year 1957 and estimated combination weights
for each model using Integrated Bayesian Uncertainty Estimator (IBUNE) (training/calibration period).
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other scenarios. Figure 14 illustrates the estimated uncer-
tainty bound using SCEM, associated with input and model
parameters for the three above mentioned models for the
water year 1957. The solid dots in Figure 15 represent
observed streamflow. Notice that different models include
different observation values from various parts of the
observed hydrograph, which can be interpreted as skill of
the model to capture various processes within the water-
shed. On the basis of step 5 of IBUNE (presented in the
previous section), the posterior probability distribution of
each model in capturing observations (i.e., the weight) for
each model was estimated. The weights are presented in
Figure 14. As expected, the model with the higher skill
(SAC-SMA) was assigned the highest weight, while the
model with the lowest skill (SWB) was assigned the lowest
weight. Both HYMOD and SWB gain very small weights.
However, their contribution to the final results is consider-
able because they represent variety of the watershed pro-
cesses which were not well represented in the SAC-SMA.
[53] The final IBUNE predictive probability which was

estimated based on the probability of contributing model in
the combination is given in Figure 15. The width of this
final probability can be calculated through equation (12);
however, the shape and intensity of the distribution can be
captured through summation of the posterior probability
distribution of contributing models in the combination
(Figure 15a). The connected dots depict the IBUNE predic-
tive mean which was estimated through equation (11) using
the estimated weights and model simulations at each point.
Another interesting observation from Figure 15 is that in
some parts of the hydrograph, the final posterior probability
of the three contributing model does not meet and therefore
causes discontinuity in the final posterior probability distri-
bution at these parts of the hydrograph (Figure 15). These

Figure 15. Streamflow hydrograph prediction uncertainty associated with estimated parameters and
input error model parameters as well as model structural uncertainty (in shaded gray) for water year 1957
(calibration period). The lighter patches in the uncertainty bounds represent the discontinuity of the final
model distributions. (inset) Profile of the selected cross section which includes the final distribution of
each member model and the final IBUNE predictive probability density function.

Figure 16. Distribution of DRMS and DABS for
individual models and IBUNE.
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discontinuity areas are presented by the light gray color in
Figure 15. Also shown in Figure 15a is the profile of a cross
section in the hydrograph for clarification. Notice that the
posterior probability distribution at this time step is discon-
tinuous with three distinct modes. This is a clear indication
that these three models do not represent the model space
well and that more models are needed to avoid this problem.
This also suggests that just looking at the uncertainty
bounds as set of percentiles can be misleading in some
cases. Figure 16 shows the distribution of daily root-mean-
square error as well as the daily absolute error for all three
contributing models and simulations generated through
IBUNE. These distributions were estimated based on the
ensemble of simulations generated by each model through
their input and model parameter distributions. Figure 16
illustrates that IBUNE improved DRMS more than DABS,
and these results indicate that IBUNE improved simulation
of the high-flow values more than the low-flow values.
[54] The Brier score (BS) was also used to compare the

skill of the individual model ensembles (considering both
parameter and input uncertainty) with IBUNE. The Brier
score is a scalar measure of the quality of probabilistic
forecast and has been commonly used in literature. BS is
defined as follows [Georgakakos et al., 2004]:

BS ¼ 1� 1

N

XN
t¼1

f tð Þ � o tð Þð Þ2; ð15Þ

where f(t) is frequency of target event at time step t
estimated by the fraction of model ensemble simulations
which are larger than prespecified threshold; o(t) is equal to
1 if the observation at that time step is larger than threshold
and equal to zero otherwise; and N is the number of time
steps in the record. Here BS is a positively oriented score,
and therefore in Figure 16 the higher the BS the better.
Figure 17 shows the BS for all the models and IBUNE. The
findings in Figure 16 that IBUNE produces superior
predictions than individual member models are confirmed
in Figure 17. One can see that IBUNE gained a higher score
in most of the thresholds. Another observation from this

figure is that IBUNE outperformed other models over the
low-flow periods as well as the high- flow periods. This
suggests that IBUNE is a promising flood forecasting
framework because it has higher skills in capturing higher
flows.
[55] The percentage of observations which are bracketed

by the estimated 95% uncertainty bounds is given in
Figure 18. Ninety-five percent uncertainty bounds estimated
through IBUNE cover 74% of the observation over the
whole study period, which is significantly higher than any
single model. This 74% excludes the points which are in the
discontinuity sections with zero probability. However, only
considering whatever point falls within the upper and lower
uncertainty bounds at each time step will give us a percent
convergence equal to 83% (Figure 18).
[56] To demonstrate usefulness of IBUNE as a stream-

flow prediction framework, we evaluated its performance
using data from an independent 3-year validation period
(1958–1960). Table 5 presents summary statistics of the
validation results comparing all three scenarios, including
SCEM, Extended SCEM, and IBUNE. The results in Table 5
indicate that IBUNE consistently provides better values of

Figure 17. Brier score for IBUNE and three member
models.

Figure 18. Percentage of observation in 95% uncertainty
bounds of different models and IBUNE.

Table 5. Summary of Statistics of the Streamflow Prediction

During the Validation Period (Water Year 1958–1960) for All

Three Scenarios Presented

Statistic

SCEM (par)
Extended SCEM
(par + input)

IBUNESAC HYM SWB SAC HYM SWB

DRMS 16.68 15.48 24.05 16.09 13.23 22.27 12.59
Percent bias �12.38 �7.83 18.89 �0.45 �3.67 10.64 �2.6
Correlation 0.89 0.89 0.86 0.90 0.92 0.87 0.94
Percent of

Observationsa
11.5 17.5 7.6 22 20.5 14.5 76.3

aPercentage of observations being in 95% uncertainty bounds.
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the DRMS error, bias (percent bias), correlation, and percent
of observations fall within 95% uncertainty bounds (percent
of observations) statistics than both SCEM and Extended
SCEM for all three models. It is also interesting to point out
that as we account for input uncertainty along with param-
eter uncertainty (extended SCEM) in the hydrological
models, the statistics tend to improve compared with the
conventional SCEM approach, which just accounts for
parameter uncertainty. Therefore explicitly accounting for
input, parameter, and model structural uncertainty during
calibration period can lead to improved assessment of
predictive uncertainty as well as model forecasts.

6. Summary and Conclusions

[57] The prevailing approach in hydrological modeling
and the assessment of related uncertainty has been the use of
sophisticated calibration techniques to estimate an optimal
set of parameters for a single model. Through these pro-
cesses, all other sources of uncertainty, including input and
model structural uncertainty, are generally ignored, and the
uncertainty in the model estimation of the system is pri-
marily assigned to the uncertainty in model parameters.
Nevertheless, we know that a single-model structure is
incapable of representing all of the hydrological processes
within a watershed and all of the system observations
including input forcing contain measurement error. Conse-
quently, these assumptions lead to an incorrect estimation of
total uncertainty in the model predictions.
[58] The objectives of this paper were threefold: (1) to

demonstrate that the classic uncertainty assessment ap-
proach in hydrology which relays all of the uncertainty
within the system on the parameter estimation is not reliable
and accurate, (2) to introduce a new approach to simulta-
neously address model parameter estimation and input
forcing uncertainty, and (3) to propose a new framework
that tackles three major sources of uncertainty, including
uncertainty inherited in input forcings, parameter estima-
tion, and model structure. The conclusion of this work can
be summarized as follows:
[59] 1. The underlying approach for uncertainty assess-

ment in hydrological modeling has been to treat the model
and observation data unbiased and precise and treat the
uncertainty in the modeling processes as being explicitly
attributed to the uncertainty in the parameter estimates. In
this study we verified that such an assumption will lead to
biased and corrupted parameter estimates. Hence the result
is unrealistic model simulations and their associated uncer-
tainty bounds which does not consistently capture and
represent the real-world behavior of the watershed. This
was demonstrated through two separate case studies using
Shuffled Complex Evolution Metropolis (SCEM) [Vrugt et
al., 2003], the newly developed probabilistic parameter
estimation algorithm, to calibrate three selected hydrologic
models for the Leaf River basin in Mississippi. The under-
study models included the Sacramento soil moisture ac-
counting (SAC-SMA) model, the soil water balance (SWB)
model, and the hydrologic model (HYMOD).
[60] 2. In the second attempt to estimate more accurate

and less corrupt uncertainty bounds for the hydrologic
model simulation, we proposed a new approach to account
for associated uncertainty in the input forcings. We simply
introduced an input error model which assumed a random

Gaussian error as a multiplier for every input observation.
The common ground for these multipliers is that they are all
from an identical distribution with unknown first two
moments (mean and variance). Therefore we extended
SCEM to estimate these two new unknown parameters with
the hydrologic model parameters and their associated un-
certainty. We demonstrated that undertaking such a simple
approach to address input uncertainty improved the accu-
racy and reliability of the hydrologic simulations and their
associated uncertainty bounds significantly.
[61] 3. Although accounting for the input uncertainty

generated more reliable results, these results were still
suffering from a very common limitation in hydrologic
modeling attitudes that the model understudy is the best
model in hand. However, the most sophisticated models are
still simple representations of the real world and cannot
capture all of the processes with the catchments. In order to
take into account this source of uncertainty, we exploit the
newly developed technique, called Bayesian model averag-
ing (BMA) [Hoeting et al., 1999]. BMA disregards the
traditional belief in hydrological modeling and explores
multiple model structures to represent the processes within
the system. We merged this method (BMA) with the
extended SCEM presented in this paper which accounts
for both input and parameter uncertainty and proposed a
new hybrid framework entitled, Integrated Bayesian Uncer-
tainty Estimator (IBUNE). IBUNE combines and exploits
the strengths of the SCEM as an efficient and effective
probabilistic model parameter estimator algorithm and the
introduced input error model, as well as Bayesian model
combination techniques, to provide an integrated assess-
ment of uncertainty propagating through the system from
parameter estimation, input forcing, and model structure.
[62] 4. The usefulness and applicability of IBUNE has

also been demonstrated via a validation study over a 3-year-
period from 1958 to 1960. The results confirmed that both
extended SCME and IBUNE framework are convincing
tools to improve the accuracy and reliability of the predic-
tions and their associated uncertainty bounds even during
validation period. The results presented here were obtained
through simulation experiment; however, it would be very
interesting to test the performance of this framework
through a set of forecast experiments which uses forecasted
inputs such as precipitation to force the hydrologic models.
[63] To demonstrate the usefulness and applicability of

IBUNE, we used the same hydrologic models considered
earlier. The strength of these three models was combined
through IBUNE. We showed that IBUNE is a very useful
and applicable technique which accounts for all of the
different sources of uncertainty within the hydrologic
system and results in improved model prediction
uncertainty bounds that bracket higher percentage of system
observations.
[64] IBUNE is a flexible framework which can be ex-

panded by including many more hydrologic models. All
three major components of the framework, SCEM, input
error model, and BMA, investigate different limitations in
hydrologic modeling processes and provide more precise
estimation of uncertainty bounds by confronting all of these
different sources of uncertainty.
[65] Although accounting for all sources of uncertainty is

very important in forecasting future devastating events, all
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of the at-hand techniques including the work presented here
are still too expensive to be used for real-time operational
application. However, the ever increasing pace of compu-
tational power will soon provide the opportunity for oper-
ational communities to take advantage of these state-of-the-
art methods to address uncertainty associated with their
forecasts in a more reliable and accurate manner.
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