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High-capacity preconscious processing in concurrent
groupings of colored dots
Peng Suna,1, Charles Chubba, Charles E. Wrighta, and George Sperlinga,1

aDepartment of Cognitive Sciences, University of California, Irvine, CA 92697

Contributed by George Sperling, November 6, 2018 (sent for review August 27, 2018; reviewed by Justin Halberda and Michel Treisman)

Grouping is a perceptual process in which a subset of stimulus
components (a group) is selected for a subsequent—typically im-
plicit—perceptual computation. Grouping is a critical precursor to
segmenting objects from the background and ultimately to object
recognition. Here, we study grouping by color. We present sub-
jects with 300-ms exposures of 12 dots colored with the same but
unknown identical color interspersed among 14 dots of seven dif-
ferent colors. To indicate grouping, subjects point-click the remem-
bered centroid (“center of gravity”) of the set of homogeneous
dots, of heterogeneous dots, or of all dots. Subjects accurately
judge all of these centroids. Furthermore, after a single stimulus
exposure, subjects can judge both the heterogeneous and homo-
geneous centroids, that is, subjects simultaneously group by similar-
ity and by dissimilarity. The centroid paradigm reveals the relative
weight of each dot among targets and distractors to the underlying
grouping process, offering a more detailed, quantitative description
of grouping than was previously possible. A change detection exper-
iment reveals that conscious memory contains less than two dots
and their locations, whereas an ideal detector would have to per-
fectly process at least 15 of 26 dots to match the subjects’ centroid
judgments—indicating an extraordinary capacity for preconscious
grouping. A different color set yielded identical results. Grouping
theories that rely on predefined feature maps would fail to explain
these results. Rather, the results indicate that preconscious group-
ing is automatic, flexible, and rapid, and a far more complex process
than previously believed.

perceptual grouping | summary statistics | centroid judgments |
grouping by similarity | preconscious processing

Current models of visual processing assume that low-level vi-
sion produces retinotopically organized maps of various

“features” that can be thought of as “neural images” (1). For
example, one such feature map might reflect the distribution
across space of “redness”; another might reflect the distribution
of “vertical” pattern elements; yet another might reflect the
distribution of pattern elements in a certain spatial frequency
band. The concept of multiple feature maps has a long history
but is probably best known from studies of visual search (2–6).
Multiple predefined feature maps are a core concept of current
computational models of subsequent visual functions such as
visual attention (7–10). These models make various assumptions
about processes that operate on the output of these feature maps
to segment the visual field into qualitatively distinct scene
components, to establish spatial relations between scene com-
ponents, and to aggregate some of the scene components into
groups (11–15). These processes represent an intermediate level
of visual processing that is preliminary to higher-order visual
processing such as object recognition and localization that en-
able visually controlled behavior.
The current study focuses on an intermediate level of visual

processing, the grouping process. Here, by grouping we refer to
the process in which a scene is divided into different, generally
nonoverlapping segments. Each segment as a whole, a group,
may be subsequently processed by higher-level visual functions
that, among other things, compute summary statistics of the
group. This intermediate level of processing is also known as

segmentation, figure-ground. Gestalt psychologists proposed
various heuristic rules that govern grouping: items tend to be
grouped when they are close, connected, similar, move together,
and so forth (16). Here, our focus is grouping by similarity; items
sharing similar features (e.g., color, shape, size) tend to be
grouped together. Grouping by similarity is typically measured
through indirect comparisons against other grouping principles
(refs. 17–23; see ref. 24 for a review), or through subjective ratings
(25). However, we are not aware of studies that directly and
quantitatively measure grouping by similarity, that is, grouping by
a common property.
Here, we introduce a recently developed paradigm, the cen-

troid paradigm, which is particularly adapted to the study of
grouping because it enables a quick, direct quantitative measure
of the “weight” that each type of element in the scene contrib-
utes to the group—elements that should be in the group (targets)
and elements that should not (distractors). With this paradigm,
we discover some unexpected properties of the preconscious
grouping process that, among other consequences, force a rejec-
tion of the concept of predefined feature maps in the context of
grouping by similarity.

Outline
The experiments herein deal with subjects’ abilities, from observing
a brief exposure of an array of 26 dots of eight different colors, to
group it into two subsets, a homogeneous subset of 12 identically
colored dots and a heterogeneous subset of 14 dots of seven dif-
ferent colors. The subjects’ ability to group is demonstrated by
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their accuracies in judging the “centroid” (the center of mass) of
each group. The method and the accompanying analysis reveal the
weight assigned to each type of target item, and the weight
assigned to each type of distractor item, thereby revealing in detail
how well subjects have excluded all distractors. We use the term
“selectivity” to refer to a subject’s ability to exclude distractor
items, an indicator of subjects’ ability to group the desired items.
Another indicator is the amount of stimulus information utilized in
forming a group. We measure the lower bound for the proportion
of target items that must have been included to account for the
accuracy of centroid judgments. We use the term “efficiency” to
refer to this lower bound.
Experiment 1 shows that subjects can, with high selectivity and

high efficiency, judge the centroids of (i) all dots in the display,
(ii) the homogeneous set only, and (iii) the heterogeneous set
only. Experiment 2 shows that, with the same selectivity and only
a slight efficiency loss, subjects can, on the same trial, simulta-
neously judge the centroids of both the homogeneous and the
heterogeneous sets.
Subjects achieve their performance in experiments 1 and

2 without knowing in advance the color of the homogeneous set
before each trial. That subjects can group by both similarity and
by dissimilarity, demotes similarity from an explanatory to a merely
descriptive principle. In a control experiment, we show that chang-
ing to a different set of eight colors yields data that are equivalent to
the original set. That virtually any arbitrarily chosen color can serve
as a feature demonstrates that the simple concept of dividing and
aggregating predetermined color-feature maps is too simple. An
ideal observer requires the exact locations of minimally 8–9 dots (of
12 and 14) to match the accuracy of the subjects’ judged centroids
for homogeneous or heterogeneous sets, and minimally 17 dots to
match judged centroids for all 26 dots.
Experiment 3 confirms that the computation of a heteroge-

neous centroid in experiments 1 and 2 is the result of a faster,
preconscious grouping process that could not be achieved by
computing the centroid of all and subtracting the centroid of the
homogeneous dots. Experiment 4 utilizes two change blindness
paradigms to determine how many dots are consciously available
to subjects following the brief exposures of experiments 1 and 2.
The number of consciously available dots is less than 2—vs.
15 available to centroid judgments.
Together, these four experiments enable a quantitative char-

acterization of both the high selectivity and the capacity of a
preconscious perceptual grouping process that makes available to
consciousness precise statistics, centroids, distilled from enor-
mously more input information than could have been consciously
processed.

Methods
The centroid judgment paradigm adopted in this study was originally de-
veloped by Drew et al. (26) to study feature-based attention, and was con-
siderably enhanced by Sun et al. (27, 28). On all trials, subjects viewed a
300-ms flash of a display of 26 dots, 12 dots of one randomly chosen color
(homogeneous set), plus 14 dots consisting of 2 each of 7 remaining colors
(heterogeneous set; see Fig. 1 for example). The task was to group the dots
into different subsets, according to instructions. Subjects’ grouping ability is
demonstrated by their abilities to accurately judge the centroid of the de-
sired subset. For example, to achieve perfect homogeneous centroid judg-
ments, subjects would have to perfectly group the 12 identical dots while
completely ignoring the 14 heterogeneous dots. In a more realistic percep-
tual grouping process, some heterogeneous dots “slip” into the formed
similarity group while some identical dots slip away. In both cases, the lo-
cation of the judged centroid is influenced by the accuracy of the grouping
process. From the precise 2D locations of a subject’s centroid judgment er-
rors, we infer the details of the subject’s grouping process and the magni-
tude of the aggregate internal noise.

The subject’s task in homogeneous blocks of trials was to move a cursor to
the (remembered) centroid—the mean location—of the group of homoge-
neous dots and, on heterogeneous blocks of trials, to move the cursor to the
centroid of the group of heterogeneous dots. On each trial, after the sub-

ject’s response, there was complete feedback showing the dot display, the
true centroid, and the subject’s judged centroid.

A brief control experiment was conducted to demonstrate that the
original eight colors did not stimulate unique features, that another arbitrary
sets of eight very different colors would produce the same results. Two
subjects performed the homogeneous and heterogeneous centroid judg-
ment tasks for a different set of eight equiluminant colors. The new colors
were chosen in-between each pair of the original eight test colors (Fig. 1) and
yielded statistically identical results.

In experiment 2, instead of reporting the centroid of only one group of
dots, subjects reported centroids of both the homogeneous group and
heterogeneous group by making two mouse clicks in each trial (a dual-
response task). The purpose of control experiment 2 was to show that,
even though in the main experiment subjects reported only one centroid,
they are in fact able to compute both the homogeneous and the hetero-
geneous centroid in a single briefly exposed dot display. Because order of
report may be important, the order of report was switched between ho-
mogeneous centroid reported first and heterogeneous first in alternating
blocks of trials.

In experiment 3, subjects also made two mouse clicks. One of them was
directed to the centroid of the homogeneous dots, just like in experiment 2.
However, the other one was directed to the location that would balance the
centroid of the homogeneous dots, around the centroid of All dots. Every-
thing else in the procedure was exactly same as in experiment 2.

In experiment 4, subjects viewed two consecutive stimuli that were sep-
arated by a 300-ms mask. One of the two stimuli was drawn from the same
urn as in previous three experiments. That is, it contained 12 dots of identical
colors and 2 dots of each of the remaining colors. The other stimulus was same
except had one dot from each set removed. The showing sequence of the two
stimulus frames was blocked. In separate blocks of trials, subjects clicked
either the two locations of the two missing dots or the two extra dots in the
second stimulus frame. The first stimulus frame was shown for 300 ms, fol-
lowed by a 300-ms mask. The second stimulus frame was shown indefinitely
until subjects made their responses. Complete feedback was given after
each trial.

Apparatus. The experiment was conducted on an iMac Intel computer in-
stalled with Matlab 2012b and Psychtoolbox-2 software (29). Stimuli were
displayed on a built-in 23-inch, 60-Hz refresh rate, LED monitor with a res-
olution of 1,920 × 1,080. The mean luminance of the monitor was 43.8 cd/m2.
Stimuli were viewed binocularly at ∼72 cm.

Subjects. The first author (S2), three psychology undergraduate students (S1,
S3, and S4), and a high school student (S5) participated in experiment 1a. The
five subjects (three females) ranged in age from 17 to 33 y. All subjects except

A B

Fig. 1. The locations of the dot colors in cone color space and an example
stimulus. (A) The colors lie on an equiluminant plane in cone space. The y axis
represents blue-cone (short wavelength, S) activation in the downward di-
rection. The x axis is chosen to be orthogonal to the y axis in this equilu-
minant plane and represents a red–green axis, approximately long (L) minus
middle wavelength (M) cone activation. The circles represent the eight colors
used in experiments 1 and 2. The dots represent the alternate colors used in
control experiment 1a. (B) A representative stimulus. The 26 stimulus dots
comprise two groups: a homogeneous group of 12 yellow dots (in this
particular example) and a heterogeneous group (14 dots, 2 each of the
7 other colors). Background luminance in this reproduction is deliberately
much darker than in the actual experimental displays to make the stimulus
dots more visible.
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S2were naive to the purpose of the experiment. S1 and S3 had participated in
experiments conducted in the laboratory before and thus were considered
experienced subjects. S4 and S5 had never previously participated in any
psychophysical experiments. S1, S2, and S5 participated in experiment 2.
S2 and S5 also participated in experiments 3 and 4. All subjects reported
having normal or corrected-to-normal vision. Methods were approved by the
University of California, Irvine (UCI) IRB, and all subjects provided signed
informed consent forms. The protocol and signed consent forms were ap-
proved by the UCI IRB.

Stimuli. A stimulus contained 26 dots displayed within a 512 × 512-pixel-wide,
invisible square that spanned a visual angle of 12.1 degree of visual angle
(dva). Dots were 9-pixel-wide squares, each spanning 0.21 dva. Each dot was
painted in one of eight colors that was calibrated individually for each
subject before the main experiment to be equiluminant to a grayscale
background of 52.1 cd/m2.

Of the 26 stimulus dots, 12 were the same color—the homogeneous group.
The remaining 14 dots consisted of 2 dots of each of the other 7 equiluminant
colors—the heterogeneous group. The eight colors were drawn from an
equiluminant hue circle defined in standard cone space (30) with equal dis-
tance to the background gray. The first color was chosen to be the maximum
saturation in the blue-cone direction. The other colors were chosen to be
separated by equal 45° angles around a cone-defined hue circle.

Locations of homogeneous and heterogeneous dots were determined by a
two-step process: First, a nominal centroid for each group was determined.
The two nominal centroids were drawn from two independent bivariate
Gaussian distributions with different means but the same x and y SDs of
3 dva. The means of the two distributions from which nominal centroids
were chosen roved independently, both with SD of 0.70 dva. Then, dots
were distributed around each nominal centroid. The x, y location of each dot
was drawn independently from a Gaussian distribution with x and y SDs of
3 dva centered around its nominal mean. The expected locations of the
centroids of the homogeneous dots and of the heterogeneous dots were
completely independent of each other. The root-mean-square (rms) trial-to-
trial variations of the actual stimulus centroids of the homogeneous, the
heterogeneous, and all of the dots, were 1.41, 1.33, and 1.09 dva, respectively.
The rms difference between homogeneous and heterogeneous centroids was
1.94 dva. Fig. 1 shows the stimulus colors and an example stimulus.

Procedure. Before starting experiment 1, subjects were trained in the centroid
task with the same 300-ms exposure as in the main experiment. Stimuli were
either homogeneous or heterogeneous sets of dots chosen from the ex-
perimental colors. The numbers of stimulus dots were 1, 2, 6, 12, and 18. The
instruction in the training experiment was to click on the centroid of all dots,
that is, no distractor dots. The subject had to produce centroid judgments
accurate to within an average 20 pixels away from the true centroid position
with stimuli of each number before progressing to the next higher number
stimulus. Subjects started with experiment 1 after they completed the
training session, which typically totaled 400–500 trials.

Fig. 2 shows an example of a typical trial for experiment 1. The trial
started with a 1-s blank frame (foreperiod), followed by a 300-ms stimulus
frame. After the offset of the stimulus frame, for three subjects, a masking
frame containing a grid of randomly colored dots appeared for 300 ms. For
three subjects, the masking frame was omitted. The subject used a mouse-
controlled cursor to indicate the centroid of a subset, or of all of the dots,
according to the attention instruction at the beginning of a block.

One of three different attention instructions was given at the beginning of
a block of trials: (i) Locate the centroid of the most populous dots (homo-
geneous dots) or (ii) locate the centroid of all of the dots other than the
most populous ones (heterogeneous dots) or (iii) locate the centroid of all
dots. Blocks of the three conditions were counterbalanced. No additional
attention instructions were provided during a block of trials as the attention
condition was implicit in the feedback.

Within a block, there were 20 trials for each of the 8 possible homoge-
neous colors, totaling 160 trials that were randomly interleaved. Each block
occurred in each of 3 attention conditions; this blockwas repeated 6 times in a
Latin square counterbalanced order over subjects. In total, there were
18 blocks equal to 2,880 experimental trials for each subject. Note that the
stimulus construction was same for all three attention conditions. Therefore,
attention instructions and feedback were the only experimental factors that
could contribute to different outcomes for different attention conditions.

The procedure for experiment 2, dual-response task, was same as for
experiment 1, except that, in each trial, subjects now reported two centroids,
one for each of the two groups, with two separate mouse clicks. A single
feedback display showed the true centroids of both groups plus the subject’s

two clicked locations. The order of report of the two centroids was blocked.
That is, in alternate blocks of trials, subjects reported the homogeneous
centroid first and in the other blocks, the heterogeneous centroid first.
Subjects completed 12 blocks of 160 trials for the dual-response task
(6 homo-first blocks alternated with 6 hetero-first blocks). In a pilot analysis,
we found, to our surprise, that subjects’ performances in the dual-response
task closely matched their performances in the single-response task in ex-
periment 1. As subjects’ ability to segregate the two groups might have
greatly improved during the thousands of trials in experiment 1, subjects
repeated the attend-to-homogeneous and attend-to-heterogeneous tasks
(single-response tasks) following completion of the dual-response task. Only
the second set of single-response date was used as the control for the dual
task, thereby removing any possible advantage the dual-response task might
have gained through practice.

Results
Mean Response Errors: Experiment 1. The most direct measurement
of a subject’s performance is the response error—the distance
between the true centroid location of the target group and
subject’s mouse-click response. Fig. 3 shows subjects’ mean re-
sponse errors for the three attention conditions. The errors
range from 0.4 to 0.8 dva (=5–10 mm) for all subjects. Subjects
were most accurate when attending to all dots, they were less
accurate when attending to the homogeneous group, and they
made the largest errors when attending to the heterogeneous
group.

Perceptual Color Filters. Response errors only reflect subjects’
relative performances between the three attention conditions.
They do not provide quantitative measurement on the degree to
which the subjects have isolated the target group and excluded
the distracting group. We compute an implicit “perceptual color
filter” for each subject in each condition. The filter is created on-
the-fly according to the current instruction about which subset to
group and the colors of the dots that happen to occur in the
immediate stimulus. The perceptual color filter reflects the rel-
ative weight of each color of dot in determining the subject’s
response, that is, the Selectivity (Sel) of the grouping process.
A given experimental condition ϕ is characterized by (i) the

specific histogram of colors that occur in all of the stimuli used in
that condition and (ii) the filter that the subject is instructed to
achieve, that is, the “target filter” for the condition. For any one
of our eight colors C, there are three conditions that use displays
comprising 12 dots of color C and 2 dots of each of the other
seven colors. In the Homogeneous (Hom) condition, the target
filter assigns weight 1 to C and weight 0 to the other seven colors;
in the Heterogeneous (Het) condition, the target filter assigns
weight 0 to C and weight 1/7 to the other seven colors. In the All

1000 ms 300 ms 300 ms Until response Until next trial 
initiated by Ss  

Fig. 2. The sequence of stimuli in a trial: blank field; stimulus; poststimulus
mask; blank field with movable cursor (+ sign) for the subject to click on the
perceived centroid; feedback showing the stimulus, the target centroid
(black disk), and the subject’s response (+).
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(attend equally to all dots) condition, the target filter assigns
weight 1/8 to all eight colors.
Definitions. Let xn, yn be the location of the nth dot in a dot cloud,
rx, ry be the location of the subject’s response, and Cn be the color
of the nth dot. (The bold-type symbols represent vectors with the
trial number as the implicit vector dimension.) We assume that
the weight exerted by dot n on the subject’s response in condition
ϕ is fϕðCnÞ.
Perceptual filter model. To compute fϕ for a particular subject, in
condition ϕ, with a particular set of color stimuli that has I dif-
ferent colors, we follow the analysis of Sun et al. (28). For a
stimulus of N dots, the filter model’s centroid response (rx, ry) is
as follows:

rx =
XN

n=1
fϕðCnÞxn +Qx and ry =

XN

n=1
fϕðCnÞyn +Qy. [1]

That is, rx, ry is the centroid of all dots weighted by their color
weights fϕðCnÞ plus Qx and Qy, normally distributed random var-
iables reflecting residual error. It is more convenient to express
the color weights in terms of the color ID i instead of the dot
number n, that is, fϕðCiÞ is the filter weight of all dots that have
color Ci. For convenience, we let the sum of a perceptual filter’s
color weights be 1,

PI

i= 1
fϕðCiÞ= 1. Eq. 1 implies a simple linear

model in which the color-filter weights f φðCiÞ of the best-fitting
model (i.e., the model that minimizes Qx, Qy) are obtained by
standard multivariate linear regression (e.g., ref. 28). [Note:
Whereas the perceptual filter function f ϕðCÞ describes the weight
exerted on the subject’s responses by dots of different colors C, the
total amount of information that passes through the filter is cap-
tured by another statistic, Efficiency (Eff), to be described later.]
Perceptual color filters. To illustrate the selectivity analysis, con-
sider subject S1’s perceptual color filters f ϕ for the three atten-
tion conditions in which “green” is the homogeneous color (Fig.
4 A–C). The dashed lines indicate the target filter, that is,
weights an ideal observer would achieve with the target filter. In
Fig. 4A, the large filter weight associated with the green com-
pared with the small filter weights of the other seven colors

makes the perceptual green-selective color filter f ϕ appear like a
physical color filter through which one color (the green color of
the homogeneous dots) is transmitted and the other seven colors
are severely attenuated. Note that homogeneous colors were
randomly interleaved within a block; no color cues were ever
given to prepare subjects for tuning their “color filters” before a
stimulus was shown. It is quite remarkable that, based simply on
color homogeneity or heterogeneity, which becomes apparent
only during a brief 300-ms exposure, a subject spontaneously
achieves a perceptual color filter that either closely approximates
the target filter that selectively transmits only that particular
trial’s homogeneous color (Fig. 4A) or selectively blocks the
homogeneous color (Fig. 4B) and transmits all of the others (Fig.
4B). Fig. 4C also shows that, when attempting to give equal
weight to all dots, S1 achieves a perceptual color filter that in-
deed gives approximately equal weight to all eight dot colors.
S1’s three different task-dependent perceptual color filters for

each of the eight different color stimuli (3 × 8 = 24 filters) are
shown in Fig. 4 D–F. Fig. 4 D and E demonstrates that the
general pattern of sharply tuned f ϕ is very similar for each of the
eight stimulus colors. Perceptual color filter weights are sharply
peaked or sharply dented according to whether the homoge-
neous group or heterogeneous group is attended. Under equal-
attention instructions (the All conditions), each dot was to be
weighted equally independent of its color, and the perceptual
filter weights indicate that subject S1 was able to achieve a close
approximation to equal weighting.
The similarity of the filter shapes for the eight different kinds of

stimuli (the eight different homogeneous colors) justifies comput-
ing the average filters for each of the three attention conditions.
The averaging computation implicitly assumes that the colors are
equally spaced; the shape similarity of the filters suggests that this is
a reasonable approximation. The average perceptual color filters
were quite similar across subjects, so these too are averaged. Be-
cause filtering is a multiplicative operation, to better enable com-
parisons, the three perceptual color filters, averaged over subjects
and colors, are shown on logarithmic coordinates (Fig. 4G). Data
for individual subjects and colors are available in SI Appendix.

Quantifying Perceptual Grouping Performance.
Perceptual grouping. To perform the task, subjects have to segre-
gate the target group from the distractor group and compute a
summary statistic (the centroid in this case) of only the target
group (Discussion, Summary, and Conclusions). Good perfor-
mance requires that most distractors be excluded from, and most
targets be included in, the centroid computation. We introduce
two measures to quantitatively assess two attributes of the per-
formance, selectivity and efficiency.
Selectivity. Sel of a perceptual filter is defined here as the mean
filter weights of all of the target color dots divided by the mean
filter weights of all of the distractor color dots. Sel expresses a
filter’s preference for targets over distractors for a particular
attention instruction and for a particular class of stimuli. Sel is
computed from the perceptual color filter f ϕ as follows. Let ½Ctar

ϕ $
and ½Cdis

ϕ $ be the sets of target and distractor colors in a condition
ϕ. Define the total mean weights of all of the targets and of all of
the distractors as follows:

Ftar =

P
C∈½Ctar

ϕ $MðCÞfϕðCÞ
P

C∈½Ctar
ϕ $MðCÞ

,

Fdis =

P
C∈½Cdis

ϕ $MðCÞfϕðCÞ
P

C∈½Cdis
ϕ $MðCÞ

,

[2]

whereMðCÞ is the number dots in the displays in condition ϕ that
have color C. (Fdis includes all of the colors that were not in Ftar.)

Fig. 3. Mean response errors (distance from the subjects’ responses to the
target centroid in degrees of visual angle) for five subjects in three attention
conditions, and for trials with and without poststimulus masks. Symbols
represent the attention condition: squares, homogeneous centroid; trian-
gles, heterogeneous centroid; asterisk, centroid of all. Error bars represent
95% confidence intervals. “Avg” is the average of the mean response errors
across six subjects for the three attention conditions. The asterisk (*) after a
subject identifier indicates poststimulus mask conditions.
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Sel is the weight ratio: Sel=Ftar=Fdis. Sel indicates the degree to
which dots of target group vs. dots of distractor group influence a
centroid judgment. For example, the selectivities of S1’s percep-
tual color filter when green is the homogeneous color are
9.8 and 6.2 for the attend-to-homogeneous and the attend-to-
heterogeneous instructions, respectively (Fig. 4). For S1, aver-
aged across all eight color conditions, the mean selectivities are
9.3 for the attend-to-homogeneous, and 4.7 for the attend-to-
heterogeneous instructions. This means that for subject S1, at-
tending to the homogeneous (or the heterogeneous) group, gives
the target group colors an advantage of 9.3:1 (or 4.7:1) over the
distractor group colors in determining the judged centroid. Av-
eraged for all colors and subjects (Fig. 4G), the perceptual filter
selectivities for the homogeneous and heterogeneous groups are
6.04 and 3.52, respectively.
When asked to give equal weight to all colors, subjects also

succeed remarkably in doing this (Fig. 4 C, F, andG), resulting in
the average Sel across subjects and colors equal to 1.16. In
attend-to-all condition, there are no segregated target and dis-
tractor groups, so we arbitrarily set Sel=FHom=FHet, where

FHom = fϕðCHomÞ and FHet =
P

C≠CHom
MðCÞfϕðCÞP

C≠CHom
MðCÞ

, [3]

where Fhom is the average weight of the 12 homogeneous dots
and Fhet is the average weight of the 2 × 7 heterogeneous dots.
Neither the slight bump in the equal-attention perceptual filter
for the homogeneous color in Fig. 4G nor any of the differences
from the null hypothesis—equal filter weights for all colors—
reach statistical significance: Under equal attention instructions,
subjects’ color weights are indifferent to the group to which
colors belong. Fig. 5A shows Sel for different subjects under
different instructions.
Whereas Sel is useful in assessing how well the distractor

group is excluded relative to the target group, it does not mea-
sure how much of the target group actually is utilized. To see

this, suppose the subject always clicks on one dot from the target
group and ignores all of the other dots. This high-miss rate
strategy would yield a Sel of infinity, because all distractor dots
are completely excluded and therefore the denominator of Sel is
zero. However, this strategy does not involve perceptual group-
ing—the aim of this study.
Efficiency. To determine whether a high value of Sel was achieved
at the cost of a high miss rate, we introduce an efficiency mea-
sure, Eff. Eff is an estimate of the fraction of dots in the target
subset that are utilized in the subject’s centroid judgment
according to an all-or-none model in which a dot and its x, y
location are either perfectly remembered or the dot is entirely
forgotten. Eff was estimated via a Monte Carlo simulation.
Specifically, to estimate Eff in a given condition ϕ, a proportion p
of all of the dots was randomly deleted from the stimulus, and
the target filter for condition ϕ was applied to the remaining dot
cloud. (Using the estimated perceptual filter of the observer
would seem more natural in computing efficiency. However,
using the target filter gives a conservative estimate of Eff, which
has an expectation that is lower than Eff computed with the
perceptual filter unless the two filters are equal.) Response error
of an ideal detector supplied with these depleted dot-clouds in-
creases monotonically with p; pmiss is determined by interpolation;
Eff is 1 − pmiss.
Attributing response error entirely to missing dots is a sim-

plification. Other factors such as motor error in placing the
cursor undoubtedly contribute to response error. However, Eff
places an absolute lower bound on the percentage of dots that
must be utilized by an ideal detector to match the subject’s
performance. If the ideal observer receives dots that are already
perturbed by other errors, such as an imperfect perceptual filter
or motor response error, then Eff would be even larger to match
a subject’s performance. For S1, when green is the homogeneous
color (Fig. 4), Eff = 0.71, 0.62, 0.70 for attending to the homo-
geneous set, the heterogeneous set, and all of the dots, re-
spectively. Averaged across all eight color conditions, S1’s mean

A B C

D E F

G

Fig. 4. Perceptual filter weights for three attention conditions and eight stimulus types for a naive subject, S1, and for the subject-population average. (A–C) S1’s
perceptual color filter weights as a function of the eight dot colors indicated on the abscissa when viewing stimuli in which the homogeneous color was green.
The three panels correspond to the three different attention conditions. The dashed lines indicate the target filter, that is, what an ideal observer, performing
perfectly according to each instruction, would have produced. (D–F) S1’s eight perceptual color filter weights plotted simultaneously in each panel, as in A–C, for
each of the eight homogeneous colors. Error bars throughout Fig. 4 represent 95% confidence intervals. The color of each solid line indicates the homogeneous
color. The lower black dashed lines in D and E indicate a weight of zero, the weight that the target filter assigns to distractors. The upper dashed lines in E and F
indicate the target filter’s weight for targets. Sel (Selectivity) is the summed perceptual filter weight of target colors divided by the summed weight of distractor
colors. Eff (Efficiency) is the proportion of, and N*Eff is the number of, target dots that an ideal observer requires to match the subject’s accuracy. Together Sel,
Eff, and N*Eff quantify how well the subject has grouped the target dots. See text for details. (G) Perceptual color filter weights of the three attention conditions
averaged across all eight colors and six subjects. Abscissa value 0 represents the color of the homogeneous dots. Adjacent numbers represent the relative clockwise
locations of adjacent colors around the color circle (Fig. 1A). The ordinate in E is 10*log10 of the average of eight color-filter weights, log10ð

P
ðfϕðCÞ=8ÞÞ. At each

abscissa value, the stimuli are from the same eight urns; the only difference between the three curves is the three different attention instructions and the feedback.
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Eff values are 0.70, 0.61, and 0.69 for the three attention in-
structions. The estimated efficiency measures indicate that an
ideal observer requires at least 70%, 61%, and 69% of the 12, 14,
and 26 target dots to match the average of the six subjects’
performances.
Let N be the number of target dots. Then N*Eff is the lower

bound on number of dots the subject must have utilized. Fig. 5B
shows N*Eff averaged across all color conditions for each sub-
ject. According to this all-or-none model, subjects utilized at least
eight target dots (or 60∼70% of all target dots) when grouping the
homogeneous or the heterogeneous dots, and at least 18 dots (or
∼70% of all 26 dots) when attending to all dots.
Fig. 5B reveals interesting properties of the data. (i) Eff is

slightly lower for the heterogeneous groups than the homoge-
neous groups. However, when the different number of dots (14,
12) in the two groups is taken into account, the same number
N*Eff of dots (within measurement error) is processed in each
group (Hom = 8.52, Het = 8.54). (ii) When subjects attend to all
dots, the number of dots utilized in their response N*Eff is 17.9,
which is slightly but not significantly greater than the sum of the
number of dots utilized in each group (17.1) when that group was
the only group tested. (iii) N*Eff = 17.9 means that to match the
accuracy of a subject’s centroid-of-all response, an ideal detector
needs at least 17 of 26 dots with dot location known exactly—
even more if there were dot position errors, an imperfect per-
ceptual color filter, an imperfect centroid computation, or motor
response error. Utilizing 17 dots indicates an extraordinary ef-
ficiency for a preconscious centroid computation. (iv) In judging
the centroid of All, if a subject formed two subgroups and then
combined the information, we would expect the error variance of
All centroids to be equal to the sum of the individual group error
variance, certainly greater than either. In fact, the error variance
for All centroids is smaller than either Hom or Het centroid error
variances. This implies that the processing resources for All are
grouped before any subdivision of these resources. We return in
Discussion, Summary, and Conclusions to consider the signifi-
cance of these results; here, we consider several related issues.
Control experiment 1.1: Is there something special about the particular set
of eight colors used in experiment 1? To explore this issue, the full

experiment was repeated with a new set of eight different colors
chosen to lie midway between the original ones (Fig. 1). For the
first two subjects tested, as expected, mean response errors for
the two different color sets were statistically indiscriminable, as
were Sel and Eff for the two color sets. We decided it was not
necessary to further pursue this side issue.
Control experiment 1.2: What is the effect of poststimulus masks? The
purpose of the mask was to prevent the continuing acquisition of
visual information after stimulus termination from a persisting
sensory image of the display, that is, to ensure that the acquisi-
tion of stimulus information was confined to the premask display
duration. Logically, the postexposure mask would be expected to
at least slightly impair performance. However, the aim was not to
measure the degree to which a poststimulus mask might impair
performance but rather to demonstrate that the 300-ms exposure
duration was sufficiently long that there are no important pa-
rameter differences between masked and unmasked perfor-
mances. The similarities of the left and right sides of Figs. 3 and 5
A and B (no mask vs. mask) make it unlikely that presence or
absence of poststimulus masks will affect any conclusions con-
cerning the grouping phenomena under investigation here.
Control experiment 1.3: Double-pass procedure. To estimate the in-
ternal noise that limits subjects’ performance in the centroid
judgment task, several weeks after the initial sessions, we reran
the first 320 trials of a previous experimental session using the
identical stimuli, the same poststimulus mask, and the same se-
quence of trials, including all three attention tasks: homoge-
neous, heterogeneous, and equal. S2, the most experienced, and
S5, the least experienced, participated. The principle of the
double-pass procedure is that, insofar as the centroid judgments
differ between the two runs, this is due to internal noise within
the subject; everything that can be controlled externally has been
kept unchanged.
Results. S2’s estimated internal noise variance is 11.5% of the
total response variance. The perceptual color filter model (i.e.,
the model of Eq. 1) accounts for 90.4% of the residual response
variance, that is, it accounts for 90.4% of the predictable com-
ponent of the data. S5’s internal noise variance is 21% of the
response variance. The perceptual color filter model accounts

A B

Fig. 5. Selectivity and efficiency of judged homogeneous, heterogeneous, and all centroids. (A) (Average homogeneous filter weight)/(Average hetero-
geneous filter weight) = Selectivity (Sel) for homogeneous and 1/Sel for heterogeneous centroid judgments. Data points are based on the average filter
weights over the eight homogeneous-color stimuli shown individually for the six subjects. Selectivities are so graphed to illustrate the enormous response
difference to the same stimuli under different attention instructions. The ordinate is a log scale. Symbols: ☐ , attend homogeneous; Δ, attend heterogeneous;
*, attend all. (B) N*Eff, the number of stimulus dots an ideal detector requires to match centroid judgments shown individually for six subjects, for three
attention conditions, each averaged over the eight homogeneous stimulus colors. N is the number of target dots, Eff is the estimated efficiency, that is, the
lower bound on the proportion of dots utilized in the response. The dotted curve is N*Effhom + N*Effhet; Avg is the average across all subjects and mask
conditions for the three attention instructions. The asterisk (*) after a subject identifier indicates a poststimulus mask condition.
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for 82.2% of the residual response variance. These results con-
firm that the perceptual color filter model indeed provides an
excellent description of performance.

Experiment 2: Dual Centroid Responses. Can subjects make two
different centroid judgments—both the homogeneous dot and the
heterogeneous dot centroids—based on the same 300-ms stimulus
exposure? This is an extremely interesting issue. If forming the
homogeneous group and the heterogeneous group and recording
these representations within 300 ms share the same resources and
compete for them, one would expect a substantial decline in
performances in the dual-response experiment (31).
To explore concurrent centroid judgments, subjects viewed

masked (or unmasked) stimuli and performed both single and
dual centroid judgments. For procedural details, see Methods. We
first compare performances between single and dual centroid
judgments on a completely model-free dimension—the centroid
error—the mean distance of subject’s judged centroids from the
true centroid. The only statistically significant main effect was that
dual-response error (first or second response) was 18% greater
than single-response error.
The most interesting results of the dual-response task are the

attention operating characteristics (AOCs) in Fig. 6. For AOCs,
it is more appropriate to use the weights assigned to each set
directly (i.e., FHom and FHet in Eq. 3) than to use the Sel values.
Weights are constrained to be between 0 and 1, whereas Sel
values are ratios and therefore unconstrained. The filter weights
(averaged over eight color conditions) derived from the dual
responses are, within measurement error, the same as the weights
derived from the single-response control data. The first and sec-
ond dual-response N*Eff values also do not differ significantly in
accuracy. The average (over first and second response, over sub-
jects, and over postmask conditions) dual-response N*Eff is
7.5 dots compared with the control single-response N*Eff of
8.6 dots, a dual-response loss of ∼1 item. This 13% decline in

efficiency (N*Eff) but not in selectivity of dual responses accounts
for the 18% greater error of dual-response centroids vs. single-
response centroids. Overall, however, the dual-response data are
remarkably similar to the single-response data, thereby demon-
strating that subjects can accurately report two centroids from a
single brief exposure.
Can subjects consciously compute a heterogeneous centroid by

subtracting the homogeneous centroid from the centroid of all,
i.e., by implicit vector subtraction? We know subjects can si-
multaneously form multiple homogeneously colored groups of
dots and estimate their numerosities (32) or their centroids
(33). Here we ask: Can subjects indirectly find the centroid of
the heterogeneous dots by reflecting the centroid location of
the homogeneous dots 180° around the centroid location of all
of the dots, never directly forming a heterogeneous group nor
computing its centroid. We refer to this procedure as “vector
subtraction.” We analyzed the residual variance of each subject’s
centroid judgments for the homogeneous Vhom, the heterogeneous
Vhet, and all of the dots Vall in experiment 1. Vector subtraction
implies that the variance of the resulting vector, that is, the vari-
ance of the indirectly computed heterogeneous vector equals the
sum of the variances of the two vector components, plus the
variance Vvs due to an imperfect vector subtraction,
Vhet indirect =Vhom + Vall +Vvs. When the residual variance of a
subject’s heterogeneous centroid judgment is less than the sum,
Vhet < Vhom +Vall, it implies a different process than vector sub-
traction. The data show that the residual variance of heteroge-
neous centroid judgment is substantially smaller than the vector
sum variance Vhet % Vhom +Vall for four of six subjects and
Vhet ≈Vhom +Vall for the other two subjects. (We estimate motor
and other non–centroid-related noise components as the variance
of locating a single dot measured during the training session. To
avoid counting this motor noise twice in the heterogeneous
vector subtractions, we factor it out of all the Vhet indirect variances.)
Based on the error analysis, we conclude that the heterogeneous
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Fig. 6. Attention operating characteristic (AOC) graphs of filter weights (a measure of the judged selectivity for the reported group) and N*Eff (lower bound
on number of target dots required by an ideal detector to match the subject’s performance) for two subjects without poststimulus masks and two subjects
with poststimulus in the dual centroid judgment task. Performances for the single-response (control) tasks are indicated on the axes and by the dashed lines.
The intersection of these lines represents the independence point where each centroid in the dual-response task is reported as accurately in terms of se-
lectivity (target vs. distractor weights) and number of items processed (N*Eff) as the corresponding centroid in the single-response task. The area inside the
independence point represents dual-task deficits. Data points represent the average first and average second response made on each trial. Symbols:☐ , first
response is the homogeneous centroid (x); Δ, first response is heterogeneous centroid (y); the asterisk (*) after the subject identifier indicates poststimulus
mask conditions.
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centroid in experiment 1 was not the result of vector subtraction.
We will also test this empirically in experiment 3.

Experiment 3: Heterogeneous Centroids by Explicit Vector Subtraction.
In experiment 3, subjects were instructed to make two mouse
clicks. The first aimed for the centroid location of the homoge-
neous dots. The second click aimed for the mirror-opposite lo-
cation that would balance the homogeneous centroid about the
centroid location of all of the dots, that is, the operation of vector
subtraction. If the estimation of the heterogeneous centroid in
experiment 2 were indeed accomplished through vector subtrac-
tion, then we would expect performance in experiment 3 to be
comparable to performance in experiment 2.
Procedure. S2 and S5 participated in this experiment. We explained
to the subjects that the second click was to be aimed at the point
that would balance the homogeneous centroid location around the
centroid location of all dots. Everything else in the procedure was
exactly same as in experiment 2, including complete feedback after
each trial, except that subjects completed only two instead of six
blocks of 160 trials. Experiment 3 was shortened because subjects
found this task extremely exhausting and had to interrupt many
times within a block to rest. However, the two blocks produced
clear results.
Results: Performances in experiment 3 vs. experiment 2. We compare
the two blocks of experiment 3 to the first two (least accurate)
blocks in experiment 2. Even so, for S2 and S5, mean response
errors were 40% and 15% greater in experiment 3 (vector sub-
traction heterogeneous centroids) than in experiment 2 (directly
estimated heterogeneous centroids). The difference in RT (re-
action time between termination of the stimulus display and the
time when the second mouse click is recorded) is dramatic. Mean
RTs for S2 and S5 in the vector subtraction experiment are
3.42 and 2.84 s. In experiment 2, the mean RTs for the same two
subjects were 2.23 and 2.05 s for the first two blocks and di-
minished to 1.56 and 1.34 s for the last two blocks. All of the RT
differences between vector subtraction in experiment 3 and di-
rect estimation of the heterogeneous centroid after estimating
the homogeneous centroid in experiment 2 were highly signifi-
cant ðP< 0.01Þ. In summary, there are four major differences
between vector subtraction and direct estimation of the hetero-
geneous centroid: Vector-subtraction centroid judgments (i)
have greater error, (ii) have greater variance, (iii) have hugely
greater reaction times, and (iv) require enormously more sub-
jective effort than directly estimated heterogeneous centroids.
We conclude that directly estimated heterogeneous centroids do
not rely on explicit vector subtraction.

Experiment 4: Conscious Memory for Dots and Their Locations.When
judging the centroid of a very briefly flashed display that has
26 dots, the subjective feeling is not of making a complex judg-
ment involving many dots but of carefully attending to a feeling
that the centroid is “here.” An alternative view might be that,
although the exposure is brief, many dots and their positions are
remembered and that the centroid computation is based on this
persisting visual memory of the stimulus. This would be post-
exposure visual processing. Consider an extreme example of
poststimulus processing: Ask a subject whether a brief exposure
of a display of three numerals, for example, 323, represents a
prime number. If the three numerals are perceived correctly, the
computations to arrive at a correct answer to the prime number
question might take several minutes. Is the centroid judgment
based on an analogous postexposure computation based on a
remembered image of the stimulus vs. a rapid implicit process?
Procedure. It is not easy to determine how much information is
retained in memory from a briefly exposed dot array. Among the
various less-than-ideal procedures available, we chose a change
detection paradigm. The same type of 26-dot stimulus was pre-
sented with a postexposure mask exactly as in all of the experiments

reported so far. However, instead of showing a blank screen for a
centroid judgment, a copy of the stimulus was presented in which
one randomly chosen dot was removed from among the homoge-
neous dots and one dot from the heterogeneous dots. The task of
the subject was to click on the locations of both missing dots. The
missing-dot stimulus remained visible until the subject responded,
that is, no mask was presented after the missing-dot stimulus. As in
the previous experiments, following the response, there was com-
plete feedback. There is a complementary experiment in which the
stimulus sequence is reversed: The second dot array has two extra
dots. The subject’s task was to click on the location of the dots that
were not present in the first array. S2 and S5 served in these ex-
periments. These procedures were intended to be analogous to
experiment 2 in which subjects estimated two centroids.
Scoring procedure. The stimulus field was divided up into 26 areas
according to which was the nearest dot. If the subject’s response
fell within the area in which the nearest dot was the target missing
dot, the response was considered correct; otherwise, it was in-
correct. There was a standard correction for chance guessing.
[There were 12 homogeneously colored dots and 14 heteroge-
neously colored dots in the stimulus. Therefore, the probability of
chance guessing, g, for homogeneous responses was 1/12, and for
heterogeneous responses was 1/14. Let po be the observed prob-
ability correct, and let pt be the true probability correct. Then pt =
(po − g)/(1 − g).]
Results. The guessing-corrected probability pt of correctly detecting
the changed dot location in the change paradigm trials was
shockingly poor. (i) The second-response data were so close to
chance performance that they are not further considered here. (ii)
The extradot procedure was much more difficult than the missing-
dot procedure (in which performance was close to chance) that it
not further considered here. The estimation of the heterogeneous
missing dot was much worse than the estimation of the homoge-
neous missing dot. (iii) The best performance, the only one con-
sidered here, is trials in which the first response click was on the
location of the missing homogeneous dot. The estimated numbers
of homogeneous stimulus dots available for making the change
detection response pt*12 for the two subjects were 1.7 and 0.17.
This compares with N*Eff (the estimated minimum number of
dots with their exact location required by the ideal observer to
match the same subjects’ centroid judgments) that is greater than
7 of the 12 homogeneous dots plus 7 of the 14 heterogeneous dots
in the dual judgment task (and >8 in single centroid judgments).
The extremely efficient preconscious centroid judgment utilizes
enormously more information about the dots and their location
than is consciously available to subjects as indicated by their
performance in change detection.

Discussion, Summary, and Conclusions
To compute a particular scene statistic such as a centroid or to
identify a particular part of the visual field as an object such as a
tree or a person, it is necessary to divide the scene into those
elements that are included in the centroid or in the object
identification computation and those parts that are excluded.
This process is called grouping, also called segmentation or
figure-ground. Here, from subjects’ judgments of the centroid
locations of interleaved groups of dots, we characterize their
grouping performances by a filter that passes some scene com-
ponents (targets) and rejects others (distracters). The filter is a
detailed characterization of what defines membership in the
group upon which a centroid is computed. We characterize the
quality of filter selectivity with a single statistic, Sel. A second
statistic N*Eff is the lower bound on the number of dots that
must have been included in a subject’s centroid computation to
have achieved the judged centroid accuracy. N*Eff measures the
combined efficiency of the grouping and the centroid computa-
tion. We summarize our findings and discuss their implications
below.
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Grouping Processes and the Centroid Computation. Among the
Gestalt psychologists, grouping referred not only to a selection
process but also to the dependent variable—the computation
made on the selected item—the subject’s impression of “be-
longing together.” Because the impression of subjective be-
longingness was difficult to quantify, subsequent experiments on
grouping used other dependent measures, typically ambiguous
arrays. For example, the perceived orientation of lines in an
array of dots might be horizontal if “grouping” was according to
similar color or vertical if grouping depended more on the
spacing between dots or some other property.
The extent to which the centroids measured in the current

experiments measure the same processes as other grouping
processes is not answered here. However, we can say (i) the
centroid data are incredibly richer and offer enormously more
detailed information about both the selectivity and efficiency of
the centroid grouping process than the methods of prior grouping
experiments. (ii) That subjects can group by both physical simi-
larity and by dissimilarity voids similarity as an explanatory prin-
ciple: (iii) Similarity itself within limits yet to be determined,
becomes whatever the experimenter defines as similarity. Physical
similarity is only one aspect of a vastly more complex concept. (iv)
A remarkable amount of information is preconsciously processed
to form a group and to compute its centroid. The great efficiency
of intertwined process of group formation and of centroid com-
putation was totally unexpected given the prior literature on
grouping.

Combining Resources to Group by All. Subjects can form three
different groups of dots: a subgroup of similar dots without any
prior knowledge of what the color of those dots will be, a group
of dissimilar dots, or a group of all of the dots. We find that
N*Eff(All) ∼ N*Eff(Hom) + N*Eff(Het), that is, the number of
utilized dots in the homogeneous centroid judgment plus the
number of dots used in the heterogeneous centroid judgment is
approximately equal to the number utilized when judging the
centroid of All. Error analysis showed that when judging the
centroid of All, subjects are deliberately indifferent to dot
properties vs. implicitly forming groups of Hom and Het and
combining the information. Rather, when only one group is
judged, there is a prior implicit combination of the resources
that, under other instructions, are separately available to each of
two grouping processes.

Obligatory Formation of Two Groups in the Same Brief Exposure.
When subjects make two centroid responses on the same trial,
the total number of stimulus dots utilized nearly equals the
number utilized when judging the centroid of All. Apparently,
the capacity of the perceptual grouping process can be flexibly
allocated to either one or to two separate subgroups. However,
when judging the centroid of only the homogeneous or only the
heterogeneous items, subjects have no more resources available
than when they judge both on the same trial. This implies that to
group a target set, for example, homogeneous items, it is oblig-
atory to also group distractor items, and vice versa.

Heterogeneous Dots: Selected or Merely Remainders? (i) Early se-
lection: Is a heterogeneous group formed by positively selecting
heterogeneous elements [e.g., by tuning the visual system for
high-variance information (34)]? Or (ii) late selection: Is a het-
erogeneous group formed as a remainder by selecting all ele-
ments and, after computing the centroid of the homogeneous
elements, removing them [e.g., “visual marking” (35)], comput-
ing the centroid of the remaining heterogeneous elements?
Obviously, homogeneous dots are removed from the heteroge-
neous centroid computation; that is what the heterogeneous
filters in Fig. 4 demonstrate. The question is whether the het-
erogeneous group is formed and its centroid is computed anal-

ogously and in parallel with the homogeneous centroid—as has
been implicitly assumed—or whether the homogeneous dot
group is formed first and then reused to subtract from a grouping
of ALL in the heterogeneous centroid computation. Although
this complex issue cannot be definitively decided on the basis of
available data, there are very good reasons in favor of positive
early heterogeneous dot selection (SI Appendix). We repeat the
conclusion here. Because a remainder process is unlikely in a
salience process of centroid computation, because the postmask
truncated exposure time is too brief for successive homogeneity
followed by heterogeneity centroid computations, because het-
erogeneous judgments can easily be made to be the primary
foreground judgments in situations that differ only slightly from the
current experiments, and because complex top–down reweighting
selection mechanisms act similarly to simpler bottom–up mecha-
nisms, there is no need to invent an unlikely special mechanism
(high-speed marking and elimination) to account for the subjects’
abilities to make heterogeneous centroid judgments in the current
displays.

Extreme Amount of Information in Preconscious Centroid Judgments.
Subject accuracy in All centroid judgments is such that an ideal
detector working with the perfect All target filter requires
knowledge of the exact location of 17.9 of 26 dots to match
subject accuracy. Had the ideal detector used the subjects’ im-
perfect perceptual filters instead of the perfect target filter, or if
dot-location representation were imperfect, or if there were any
motor response error, the ideal detector would require even
more dots.
In trials where subjects make two centroid judgments follow-

ing the same 300-ms stimulus exposure (experiment 2), an ideal
detector needs 8 + 7 = 15 of 26 dots to match subject accuracy.
The process of extracting the information from at least 17 (or
15 in two response tasks) of the 26 scattered dots is extraordi-
nary; an enormous amount of information has to be distilled to
account for the accuracy of centroid judgments.

Conscious Memory of These Low-Contrast Color Dot Displays Is
Astoundingly Poor. The change detection data show that sub-
jects cannot consciously remember the approximate location of
even two dots in these displays under precisely the same condi-
tions in which the unconscious grouping process utilizes at least
15 dots. However, in a change detection experiments with high
contrast black dots on a white background (no distractor dots),
we find that these same subjects can remember about 4∼5 dot
locations (SI Appendix). This indicates that the unconscious
grouping process can operate at the much lower contrast levels
of the color displays, whereas the less-efficient conscious visual
memory computation requires distinctive, high-contrast dots. By
analogy, it is reasonable to compute the centroid of all of the
leaves on a bush. However, there is no reason to form a con-
scious memory of individual leaves unless they are distinct in
some way. Our 26 low-contrast dots did not pass our subjects’
memory-distinctiveness threshold.

Exclusive Feature Maps for Grouping Are Not Feasible. “Feature
map” refers to an array of detectors for a particular visual fea-
ture that tile a large area of visual space and the contents of
which are available without contamination from other maps for
inspection by higher-level visual processes. This idea was for-
mulated in the context of pop-out visual search (2); searching for
a red dot embedded in a sea of green dots is easy, because the
red dot marks the only entry in a red-feature map. Searching one
map is easy. Searching for a red round dot in sea of red square
dots and green round and square dots is more difficult. Searching
two maps (red and round) and combining the information is
much slower and more difficult.
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Whereas feature maps are undoubtedly a critical component
at the earliest stages of visual processing, at the level of com-
plexity of separating target colors from distractor colors, pre-
defined feature maps are no longer useful. In experiment 1, each
of the eight colors served as the homogeneous color on 1/8 of the
trials. That requires eight unique color maps. However, the
ability of subjects to compute the centroid of the heterogeneous
features, requires that seven feature maps, each activated by two
dots, be combined to enable the heterogeneous centroid com-
putation. Those eight different combinations (depending on the
homogeneous color) of seven distractor features are computed
with almost the same N*Eff (minimum number of dots utilized
by the centroid computation) as the single-feature map compu-
tation for the homogeneous feature. There was very little cost for
combining seven maps.
Control experiment 1a used a different set of eight colors. To

deal with experiment 1a, unique-feature theory, requires eight
more unique feature maps, making total of 16 feature maps.
Additionally, it is quite obvious that, had we chosen yet another
set of eight disparate colors in the same color circle, that set also
would have yielded equivalent results. There is no reasonable
upper limit on the number of color-feature maps if every dis-
criminable color requires its own map. This reveals another
problem: A feature map is neurally expensive; it requires de-
tectors at all spatial locations—enough detectors to enable fairly
precise spatial localization.

Once there is a fixed set of color-feature maps, it is inevitable
that some stimulus colors will fall between fixed features and
stimulate more than one map. If the brain must and can utilize
multiple maps, even for a homogeneous feature that happens to
fall between two fixed color maps, and to group heterogeneous
colors that involve many maps, then why have so many expensive
maps? It is more logical to use the smallest number of maps
needed to discriminate colors, that is, three for humans with 3D
color vision, and to utilize the genetic hardware resources to
construct better computational rules for combining maps rather
than for constructing more and more maps. Instead of a very
large number of predefined feature maps, an architecture that
segregates visual elements into a limited number of layers (36,
37) according to visual regularity (21) is much more efficient.
These considerations about the brain mechanisms of grouping

are analogous to the organization of the brain more generally. At
early stages of neural processing, single neurons code simple
local features. However, in the temporal lobe, at least hundreds,
and probably many thousands of neurons are involved in coding
a visual concept, and these same neurons are involved in equally
many other concepts (38). Grouping seems to fall somewhere in
the middle of this processing continuum.

ACKNOWLEDGMENTS. We thank Adam Reeves and reviewers Justin Halberda
and Michel Treisman for their helpful comments and suggestions, and Pauline
Ton for data collection in experiment 1.

1. Robson JG (1980) Neural images: The physiological basis of spatial vision. Visual
Coding and Adaptability, ed Harris CS (Erlbaum, Hillsdale, NJ), pp 177–214.

2. Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cognit
Psychol 12:97–136.

3. Treisman A (1982) Perceptual grouping and attention in visual search for features and
for objects. J Exp Psychol Hum Percept Perform 8:194–214.

4. Treisman A (1985) Preattentive processing in vision. Comput Vis Graph Image Process
31:156–177.

5. Quinlan PT (2003) Visual feature integration theory: Past, present, and future. Psychol
Bull 129:643–673.

6. Wolfe JM (2007) Guided search 4.0: Current progress with a model of visual search.
Integrated Models of Cognitive Systems, ed Gray W (Oxford Univ Press, New York), pp
99–119.

7. Koch C, Ullman S (1985) Shifts in selective visual attention: Towards the underlying
neural circuitry. Hum Neurobiol 4:219–227.

8. Milanese R, Wechsler H, Gill S, Bost JM, Pun T (1994). Integration of bottom-up and
top-down cues for visual attention using non-linear relaxation. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 1994 (IEEE, New
York), pp 781–785.

9. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid
scene analysis. IEEE Trans Pattern Anal Mach Intell 20:1254–1259.

10. Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2:
194–203.

11. Beck J (1966a) Perceptual grouping produced by changes in orientation and shape.
Science 154:538–540.

12. Beck J (1966b) Effect of orientation and of shape similarity on perceptual grouping.
Percept Psychophys 1:300–302.

13. Huang L, Pashler H (2007) A Boolean map theory of visual attention. Psychol Rev 114:
599–631.

14. Levinthal BR, Franconeri SL (2011) Common-fate grouping as feature selection.
Psychol Sci 22:1132–1137.

15. Grossberg S, Mingolla E, Ross WD (1997) Visual brain and visual perception: How does
the cortex do perceptual grouping? Trends Neurosci 20:106–111.

16. Wertheimer M (1923) Untersuchungen zur Lehre von der Gestalt, II. Psychol Forsch 4:
301–350.

17. Rush GP (1937) Visual grouping in relation to age. Arch Psychol 31:1–95.
18. Hochberg J, Silverstein A (1956) A quantitative index of stimulus-similarity proximity

vs. differences in brightness. Am J Psychol 69:456–458.
19. Ben-Av MB, Sagi D (1995) Perceptual grouping by similarity and proximity: Experi-

mental results can be predicted by intensity autocorrelations. Vision Res 35:853–866.

20. Kubovy M, van den Berg M (2008) The whole is equal to the sum of its parts: A
probabilistic model of grouping by proximity and similarity in regular patterns.
Psychol Rev 115:131–154.

21. van den Berg M, Kubovy M, Schirillo JA (2011) Grouping by regularity and the per-
ception of illumination. Vision Res 51:1360–1371.

22. Schmidt F, Schmidt T (2013) Grouping principles in direct competition. Vision Res 88:
9–21.

23. Tannazzo T, Kurylo DD, Bukhari F (2014) Perceptual grouping across eccentricity.
Vision Res 103:101–108.

24. Wagemans J, et al. (2012) A century of Gestalt psychology in visual perception: I.
Perceptual grouping and figure-ground organization. Psychol Bull 138:1172–1217.

25. Quinlan PT, Wilton RN (1998) Grouping by proximity or similarity? Competition be-
tween the Gestalt principles in vision. Perception 27:417–430.

26. Drew SA, Chubb CF, Sperling G (2010) Precise attention filters for Weber contrast
derived from centroid estimations. J Vis 10:20.

27. Sun P, Chubb C, Wright CE, Sperling G (2016) The centroid paradigm: Quantifying
feature-based attention in terms of attention filters. Atten Percept Psychophys 78:
474–515.

28. Sun P, Chubb C, Wright CE, Sperling G (2016) Human attention filters for single colors.
Proc Natl Acad Sci USA 113:E6712–E6720.

29. Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10:433–436.
30. Stockman A, Sharpe LT (2000) The spectral sensitivities of the middle- and long-

wavelength-sensitive cones derived from measurements in observers of known ge-
notype. Vision Res 40:1711–1737.

31. Sperling G, Dosher BA (1986) Strategy and optimization in human information pro-
cessing. Handbook of Perception and Human Performance: Sensory Processes and
Perception, eds Boff K, Kaufman L, Thomas J (Wiley, New York), Vol 1, pp 2-1–2-65.

32. Halberda J, Sires SF, Feigenson L (2006) Multiple spatially overlapping sets can be
enumerated in parallel. Psychol Sci 17:572–576.

33. Sperling G, Chu V, Sun P (2016) Multiple salience maps? Abstr Psychon Soc 21:34.
34. Michael E, de Gardelle V, Summerfield C (2014) Priming by the variability of visual

information. Proc Natl Acad Sci USA 111:7873–7878.
35. Watson DG, Humphreys GW (1997) Visual marking: Prioritizing selection for new

objects by top-down attentional inhibition of old objects. Psychol Rev 104:90–122.
36. Grossberg S, Mingolla E, Ross WD (1994) A neural theory of attentive visual search:

Interactions of boundary, surface, spatial, and object representations. Psychol Rev
101:470–489.

37. Grossberg S, Zajac L (2017) How humans consciously see paintings and paintings il-
luminate how humans see. Art Percept 5:1–97.

38. Stevens CF (2018) Conserved features of the primate face code. Proc Natl Acad Sci USA
115:584–588.

E12162 | www.pnas.org/cgi/doi/10.1073/pnas.1814657115 Sun et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1814657115



