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Abstract. In 1990, Backelin showed that the number of numerical semigroups with Frobe-
nius number f approaches Ci · 2f/2 for constants C0 and C1 depending on the parity of f .
In this paper, we generalize this result to semigroups of arbitrary depth by showing there
are ⌊(q+1)2/4⌋f/(2q−2)+o(f) semigroups with Frobenius number f and depth q. More gen-
erally, for fixed q ⩾ 3, we show that, given (q − 1)m < f < qm, the number of numerical
semigroups with Frobenius number f and multiplicity m is(⌊

(q + 2)2

4

⌋α/2 ⌊
(q + 1)2

4

⌋(1−α)/2
)m+o(m)

where α = f/m − (q − 1). Among other things, these results imply Backelin’s result,
strengthen bounds on Ci, characterize the limiting distribution of multiplicity and genus
with respect to Frobenius number, and resolve a recent conjecture of Singhal on the number
of semigroups with fixed Frobenius number and maximal embedding dimension.
Keywords. Numerical semigroups, Kunz coordinates, graph homomorphisms
Mathematics Subject Classifications. 05A16, 20M14

1. Introduction

A numerical semigroup Λ is a subset of the nonnegative integers N0 that has finite complement
and is also an additive monoid, that is, it contains 0 and is closed under addition. Numeri-
cal semigroups were first studied by Frobenius and Sylvester in the context of the Frobenius
coin problem, and more recently have been of interest in constructions in algebraic geome-
try. See [Kap17, RGS09] for more background. Given a numerical semigroup Λ, one can

∗This work was done at the University of Minnesota Duluth with support from Jane Street Capital, the National
Security Agency (grant number H98230-22-1-0015), and the Izzo Fund.
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define its genus g(Λ) := #(N0 \ Λ); its multiplicity m(Λ) := min(Λ \ {0}); its conductor
c(Λ) := min{c ∈ N0 : c + N0 ⊆ Λ}; its Frobenius number f(Λ) := c(Λ) − 1; and its
depth q(Λ) = ⌈c(Λ)/m(Λ)⌉, the last of which was recently introduced by Eliahou and Fro-
mentin [EF20].

A central problem in the study of numerical semigroups is enumeration after ordering by a
specific invariant. For instance, in 2011, Zhai [Zha12] proved that the number of numerical semi-
groups with genus g is asymptotically C

(
1+

√
5

2

)g
, where C is a positive constant, settling two

conjectures of Bras–Amorós [BA07]. In 1990, Backelin [Bac90] estimated the number Frob(f)
of numerical semigroups with Frobenius number f , answering a question of Wilf:

Theorem 1.1 (Backelin [Bac90, Prop. 1]). There are constants C0 and C1 for which

Frob(f) ∼

{
C0 · 2f/2 if f even,
C1 · 2f/2 if f odd.

A key ingredient in both of these proofs is that, after ordering, almost all numerical semi-
groups have small depth. Zhai shows that numerical semigroups with genus g are almost all of
depth 2 or 3; Backelin shows that numerical semigroups with Frobenius number f are almost all
of depth 2, 3, or 4. They then estimate the number of numerical semigroups with these depths.
For instance, letting Frobq(f) denote the number of numerical semigroups with Frobenius num-
ber f and depth q, Backelin shows the following enumerative result.

Proposition 1.2 (Backelin [Bac90, pg. 202]). We have

Frob2(f) + Frob3(f) + Frob4(f) ⩽ 3 · 2⌊(f−1)/2⌋.

It is natural to consider the number of numerical semigroups of larger depth, especially
since such bounds would sharpen the results of Zhai and Backelin to lower-order terms. For
instance, in 2023, Zhu [Zhu23] proves the sharpest known asymptotics of the number of numer-
ical semigroups by bounding the number of semigroups of depth at least 4, refining estimates of
Bacher [Bac19].

In the realm of Frobenius numbers, Backelin [Bac90, eq. 13, eq. 15] proves Theorem 1.1 by
bounding on the number of numerical semigroups with depths 3, 4, and at least 5. In particular,
Backelin shows that the number of depth-3 and depth-4 numerical semigroups with Frobenius
number f and multiplicity m is at most 1

2
(11/6)⌊(f−3)/2⌋(12/11)m. The results of Backelin have

since remained the best bounds on the number of numerical semigroups of large depth, but
unfortunately they are not sharp. The bottleneck seems to be that numerical semigroups of large
depth are significantly more challenging to characterize than semigroups of depth 2 and 3.

To aid with computation, Blanco and Rosales [BR12] develop algorithms to compute the
number of numerical semigroups with fixed Frobenius number, and recently Branco, Ojeda, and
Rosales [BOR21] developed algorithms to compute the number of numerical semigroups with
fixed multiplicity and Frobenius number. However, enumerations for small f and m say little
about the behavior as these invariants grow large.
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In this paper, we determine the number of numerical semigroups with fixed Frobenius num-
ber, multiplicity, and depth. Our results are sharp up to a subexponential factor, thus improving
Backelin’s bounds by an exponential factor for all q ⩾ 3 and yielding an alternative proof to
Theorem 1.1. We abbreviate the constant cq :=

√
⌊(q + 2)2/4⌋ for q ⩾ 1.

Theorem 1.3. Fix q ⩾ 3, and let (f,m) vary subject to the condition (q − 1)m < f < qm.
Then the number of numerical semigroups with multiplicity m and Frobenius number f

is
(
cαq c

1−α
q−1

)m+o(m), where α := f/m− (q − 1).

As a corollary, we obtain sharp asymptotics on the number Frobq(f) of depth-q numerical
semigroups with Frobenius number f , which generalizes Backelin’s count of semigroups of
depth 2, 3, and 4 to arbitrary depth. We also obtain sharp asymptotics on the number of depth-q
numerical semigroups with multiplicity m, which we denote by Multq(m).

Corollary 1.4. We have Frobq(f) = (cq−1)
f/(q−1)+o(f) for q ⩾ 2.

Corollary 1.5. We have Multq(m) = c
m+o(m)
q for q ⩾ 2.

Theorem 1.3 also allows us to determine the asymptotic number of semigroups with maximal
embedding dimension, settling a recent conjecture of Singhal [Sin22]. Let MED(f) denote the
number of numerical semigroups with maximal embedding dimension and Frobenius number f .

Corollary 1.6. We have MED(f) = 2f/3+o(f).

Our methods to count semigroups of large depth differ from the literature (for example, from
those in [Zha12]) in that they are very additive-combinatorial in nature. To bound the number of
semigroups of fixed genus, Zhu [Zhu23] uses Kunz words and reduces the problem to a graph
homomorphism inequality due to Zhao [Zha11]. We extensively use and refine these methods
to prove bounds in the case of fixed Frobenius number. Many of our results from these methods
can be phrased in terms of coloring problems on Schur triples. This furthers the connection
between numerical semigroups, graph homomorphisms, and additive combinatorics.

Finally, we strengthen existing results on the distribution of multiplicity and genus with re-
spect to Frobenius number, akin to Zhu’s results for the distribution of multiplicity with respect
to genus [Zhu23, §6]. Backelin [Bac90] shows that for a fixed Frobenius number f , almost all
semigroups have multiplicity f/2 + o(f); Singhal [Sin22] shows that almost all semigroups
with Frobenius number f have genus 3f/4 + o(f). We strengthen these results by computing
the exact limiting distributions in Theorem 5.1 and Theorem 5.5. These results differ from the
first half of the paper in that they arise from an analysis of semigroups of depths 2 and 3 instead
of arbitrary depth, though some of the results depend on Theorem 1.3 for q = 3. We also show
that Theorem 1.3 implies that almost all depth-q numerical semigroups with Frobenius number f
have multiplicity close to f/(q − 1) for arbitrary depth q ⩾ 3, though we do not determine the
exact limiting distributions in this case.
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Outline

In Section 2, we introduce Kunz words and discuss the properties of the constants cq. Section 3
establishes the key enumerative results on numerical semigroups of fixed depth which form the
backbone of our paper. We apply these results in Section 4 to count numerical semigroups and
semigroups with maximal embedding dimension. In Section 5, we prove some statistics on
the distribution of multiplicity and genus. Finally, we discuss possible directions of research—
sharpening asymptotics, enumerating other kinds of numerical semigroups, and studying general
polychromatic Schur problems—in Section 6.

2. Kunz words and the constants cq

In this section, we define Kunz words, prove some initial bounds on the number of Kunz words,
and discuss some properties of the sequence (cq)q⩾1.

2.1. Kunz words

Following Zhu [Zhu23, §3], we define the Kunz word of a numerical semigroup.

Definition 2.1. Let Λ be a numerical semigroup with multiplicity m. The Kunz word K(Λ) of Λ
consists of m−1 integers w1 · · ·wm−1 where m ·wi+i is the least element of Λ that is equivalent
to i (mod m).

All of our examples will havewi a digit from 1 to 9 for clarity, but the entries can be arbitrarily
large in the general case.

Example 2.2. If Λ = N0 \ {1, 2, 3, 4, 5, 7, 9, 10, 13}, then K(Λ) = 31221.

Note that Λ is generated by {m,m ·w1 + 1, . . . ,m ·wm−1 + (m− 1)} (known as the Apéry
set of Λ), so K is a bijection between numerical semigroups of multiplicity m and Kunz words
of length m− 1.

The quantity K(Λ) is more traditionally regarded as a vector of scalars (w1, . . . , wm−1),
known as the Kunz coordinate vector of Λ. Introduced by Kunz in 1987, the Kunz coordinate
vector is typically regarded as a point in (m − 1)-dimensional space; authors have used lattice
methods, such as Ehrhart theory [Kap12, Thm. 9], to count numerical semigroups. Recently,
Bacher [Bac19] and Zhu [Zhu23] regard K(Λ) as a word whose entries are constrained by the
Kunz conditions, then enumerate these combinatorially. We adopt the latter approach for this pa-
per, and hence we opt to speak in terms of Kunz words (as opposed to coordinates) to emphasize
our approach within our notation.

Since K(Λ) determines Λ, we can read of the invariants of Λ from K(Λ) (for a proof of this
result, see, for instance, [Zhu23, Prop. 3.4]). Let [ℓ] = {1, . . . , ℓ}.
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Proposition 2.3 (Kunz [Kun87, §2]). Let Λ be a numerical semigroup and K(Λ) = w1 · · ·wℓ.
Then

• m = ℓ+ 1;

• g =
∑

i∈[ℓ] wi;

• q = maxi∈[ℓ] wi;

• f = (ℓ+ 1)(q − 1) + j, where j is maximal such that wj = q.

We often refer to invariants of a numerical semigroup via its Kunz word; for instance, the
genus of the Kunz word 31221 is 9. However, we never refer to the multiplicity of a Kunz word
and instead speak of its length, which we denote ℓ := m− 1 for brevity.

Definition 2.4. A Kunz word is q-Kunz if its depth (that is, its maximum entry) is at most q.

It is natural to ask which words correspond to valid Kunz words of a numerical semigroup.
This question was resolved by Kunz:

Proposition 2.5 (Kunz [Kun87, RGSGGB02]). A word w1 · · ·wℓ with positive integer entries is
a valid Kunz word if:

• wi + wj ⩾ wi+j for all i, j with i+ j ⩽ ℓ; and

• wi + wj + 1 ⩾ wi+j−ℓ−1 for all i, j with i+ j > ℓ+ 1.

These inequalities are the Kunz conditions.

Definition 2.6. For a fixed length ℓ, we say the word w1 · · ·wℓ is Kunz if its entries satisfy the
Kunz conditions.

It will be useful to work exclusively with sets of Kunz words with fixed invariants. Hence, we
let K(f, ℓ) denote the set of Kunz words with Frobenius number f and length ℓ. When a param-
eter is set to N, we let that parameter vary; for instance, K(N, ℓ) denotes the set of Kunz words
with length ℓ. In lieu of K, we use Kq to denote q-Kunz words instead of general Kunz words.

A word with depth q and length ℓ has Frobenius number at most st(q, ℓ) := (ℓ+ 1)q− 1, so
we occasionally write Kq(st, ℓ) := Kq(st(q, ℓ), ℓ) for the set of q-Kunz words with maximum
Frobenius number. These correspond to words whose last entry is q.1

Example 2.7. We have

• K(5,N) = {11111, 12, 211, 22, 3};

• K3(N, 2) = {11, 12, 21, 22, 23, 31, 32, 33};

• K(5, 2) = K3(5, 2) = {12, 22}.

• K3(st; 2) = {23, 33}.

1For q = 3, Zhu [Zhu23, Def. 3.7] calls these stressed q-Kunz words, hence the notational choice of st.
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Note that we haveFrob(f) = #K(f,N) andFrobq(f) = #Kq(f,N), as well asMultq(m) =
#Kq(N,m − 1). (Here, we let #S be the cardinality of the set S.) Thus, we first focus on
bounding the size of families of Kunz words like #Kq(f, ℓ) in Section 3, which in turn helps us
bound the number of numerical semigroups with fixed invariants in Section 4.

2.2. Initial bounds on #Kq

We prove the following initial bounds on #Kq(N, ℓ) and #Kq(f,N) which, while much weaker
than our main results, helps with some technicalities in Section 4.

Proposition 2.8. We have #Kq(N, ℓ) ⩽ qℓ.

Proof. This is immediate from the definition since Kq(N, ℓ) ⊆ [q]ℓ.

Corollary 2.9. We have #Kq(f,N) ⩽ f · qf/(q−1).

Proof. A Kunz word with Frobenius number f and length ℓ has depth q if and only if we have
q = ⌈(f+1)/(ℓ+1)⌉, that is, when ℓ ∈ Lf,q :=

[
f+1−q

q
, f+1−q

q−1

)
∩N. Hence, we can use Propo-

sition 2.8 to bound:

#Kq(f,N) =
∑
ℓ∈Lf,q

#Kq(f, ℓ) ⩽
∑
ℓ∈Lf,q

#Kq(N, ℓ)

⩽
∑
ℓ∈Lf,q

qℓ <
∑
ℓ∈Lf,q

q(f+1−q)/(q−1)

=
1

q
|Lf,q| qf/(q−1) < f · qf/(q−1),

as desired.

We also exactly count Kunz words of small depth, which mirrors Backelin’s enumeration of
numerical semigroups of small depth. This will later be useful to reprove Theorem 1.1 and to
determine distributions on numerical semigroups in Section 5.

Proposition 2.10. We have the following exact enumerative results:

(i) #K2(f, ℓ) = 2f−2−ℓ when (f − 1)/2 ⩽ ℓ ⩽ f − 2.

(ii) #K3(f, ℓ) = 2ℓ−j ·#K3(st, j) when (f − 2)/3 ⩽ ℓ ⩽ (f − 3)/2, where j = f − 2− 2ℓ.

For other ℓ, these quantities are 0.

Proof. Part (i) is not difficult and is shown in, for instance, [Sin22, Thm. 10], since all words
with 1’s and 2’s are 2-Kunz. For part (ii), a 3-Kunz word W = w1 · · ·wℓ has 2ℓ + j = f − 2
by Proposition 2.3, which means ℓ ∈ [(f−2)/3, (f−3)/2]. For W to be 3-Kunz, it must satisfy
the following conditions:

• wj+1 · · ·wℓ ∈ [2]ℓ−j , since otherwise j is not maximal for which wj = 3; and

• w1 · · ·wj ∈ K3(st, j), since w1 . . . wj is itself 3-Kunz and wj = 3.

These conditions are also sufficient, so #K3(f, ℓ) = 2ℓ−j ·#K3(st, j). The result follows.
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Remark 2.11. It is tempting to directly estimate the size of K3(st, j) using the Kunz condi-
tion arising from wj = 3. Namely, since w1 · · ·wj ∈ K3(st, j) forces wj = 3, we have
that wi + wj−1−i ⩾ 3 for i = 1, 2, . . . , ⌊(j − 1)/2⌋. Hence, wi and wj−1−i cannot both be 1’s,
which implies that

• #K3(st, j) ⩽ 8(j−1)/2 when j is odd, and

• #K3(st, j) ⩽ 2 · 8(j−2)/2 when j is even.
However, these naive bounds are not sharp, since not all words with wi + wj−1−i ⩾ 3 are
necessarily Kunz. In fact, Theorem 1.3 implies that #K3(st, j) = 6j/2+o(j), so the naive bounds
are an exponential factor away from the truth. Even worse, one can check that the naive bounds
give a bound of roughly#K3(f,N) ⩽ 1

6
f2f/2, which is not even enough to reprove Theorem 1.1.

The naiveté is similarly bad for large depth: there are 1
2
(q2 + 3q − 2) solutions to a+ b ⩾ q

where a, b ∈ [q], so the naive method gives a bound of #Kq(st, j) ⩽
(
1
2
(q2 + 3q − 2)

)(j−1)/2,
which is off from the true answer given by Theorem 1.3 by a factor of about 2j/2. This is es-
sentially Backelin’s bound for q ⩾ 5; see [Bac90, eq. 15]. Thus, we must be more careful in
bounding quantities like #Kq(st, j) for q ⩾ 3, which is essentially the focus of Section 3.2.

2.3. The constants cq

Throughout the paper, we abbreviate the constant cq :=
√
⌊(q + 2)2/4⌋. For even q, we have

cq = (q + 2)/2; for odd q we have cq =
1
2

√
(q + 1)(q + 3). Evidently, (cq)q⩾1 is an increasing

sequence. The following inequalities will be helpful for bounding purposes.

Lemma 2.12. For any r ∈ [0, 1], the sequence (c1/(q+r)
q )q⩾2 is decreasing.

Proof. We wish to show cq+r+1
q > cq+r

q+1, or cq > (cq+1/cq)
q+r. We have that

cq+1/cq =


√

q+4
q+2

if q even,√
q+3
q+1

if q odd.

Hence, cq+1/cq ⩽
√

q+3
q+1

in all cases. Therefore,(
cq+1

cq

)q+r

⩽

(
1 +

2

q + 1

) q+r
2

< e,

since r ∈ [0, 1]. This shows the result for q ⩾ 4. The result can be checked manually
for q = 2, 3.
Corollary 2.13. For fixed q ⩾ 3 and r ∈ [0, 1], the quantity F (t) = (ctqc

1−t
q−1)

1/(q+t−r) is de-
creasing on t ∈ [0, 1].
Proof. Note that lnF (t) = t

q+t−r
ln cq +

1−t
q+t−r

ln cq−1, which has derivative

F ′(t)

F (t)
=

1

(q + t− r)2
((q − r) ln cq − (q + 1− r) ln cq−1) .

By Lemma 2.12, this derivative is always negative, which impliesF ′(t) < 0 sinceF (t) > 0.
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3. Kunz words of fixed depth

In this section, we prove Theorem 1.3, which forms the backbone of our paper by implying a
large number of enumerative results, namely Corollaries 1.4, 1.5, and 1.6. Moreover, the case
of q = 3 plays an important role in showing the convergence of certain sums in the proofs
of Corollary 5.3 and Theorem 5.6.

The central idea is that every instance of q in a q-Kunz words imposes a strong Kunz condition
on the other entries. Thus, a cluster of q’s imposes a large number of restrictions and limits the
number of valid Kunz words, so much so that we can actually disregard the other conditions and
still show the necessary upper bound. Then, we will represent each of these restrictions with an
edge to form an almost-regular graph on the entries of the word.

3.1. Graph lemmas

To bound the number of q-Kunz words, we bound the number of colorings of certain graphs
arising from these Kunz words. In this section, we establish the graph lemmas needed for our
proofs. Of great use to us is the following graph homomorphism lemma due to Zhao [Zha11].

Definition 3.1. A graph H , possibly with loops, is a threshold graph if there exists a labeling
g : V (H) → R and threshold λ such that for (possibly equal) u, v ∈ V (H), we have uv ∈ E(H)
if and only if g(u) + g(v) ⩾ λ.

The graph Hq is the threshold graph with q vertices labeled 1, 2, . . . , q and threshold λ = q.

Theorem 3.2 (Zhao [Zha11, §2, pg. 663]2). If G is a loop-free, d-regular graph and H is a
threshold graph, then hom(G,H) ⩽ hom(Kd,d, H)#V (G)/(2d).

(Here, hom(G,H) is the number of graph homomorphisms from G to H . Recall a graph
homomorphism is a function φ : V (G) → V (H) such that for any x, y ∈ V (G), we
have xy ∈ E(G) only if φ(x)φ(y) ∈ E(H).)

The hypothesis of Theorem 3.2 requires that G is d-regular, but many of the graphs we work
with are “almost regular” in the sense that almost, but not all, vertices have degree d. We perturb
these graphs to be d-regular without decreasing the number of graph homomorphisms using the
following technical lemma.

Definition 3.3. For a graph G, let Dd(G) := d ·#V (G)− 2 ·#E(G). The quantity Dd(G) can
be viewed as the “discrepancy”

∑
v∈V (G)(d− deg v) between G and an d-regular graph.

Lemma 3.4. Let G be any graph with maximum degree at most d, and abbreviate D := Dd(G).
There is a d-regular graph G′ with the following properties:

• #V (G′) ⩽ 1 + max{3 +D/d, 2⌈d/2⌉}+#V (G); and

• hom(G,Hq) ⩽ hom(G′, Hq).
2Strangely, the result is not explicitly written within the paper, but rather follows from a series of implications

at the bottom of pg. 663 in [Zha11]; Zhao proves that all threshold graphs are GT graphs, that is, they satisfy the
given inequality.
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Proof. Before modifying G, color every vertex in V (G) blue. For a two-colored graph G, say
a homomorphism from G to Hq is admissible if every red vertex is mapped to the Hq-vertex
labeled q. Then the following operations do not decrease the number of admissible homomor-
phisms:

• removing an edge between blue vertices;

• adding isolated vertices (either red or blue);

• adding edges between two vertices, not both blue.

The first operation decreases the number of restrictions on blue vertices, and for the last two
operations, we can send every red vertex with theHq-vertex labeled q without adding restrictions
to the blue vertices. Hence, we perform the following procedure on G to get a new graph G′:

(1) If #V (G) is odd, add an isolated, unlabeled blue vertex (so now #V (G) is even).

(2) Remove edges between blue vertices until D := Dd(G) is divisible by d.

(3) If D/d > d, add D/d isolated red vertices. Otherwise, add 2⌈d/2⌉ red vertices.

(4) For each blue vertex vb with degree x < d, draw d − x edges from vb to the d − x red
vertices with least degree (breaking ties arbitrarily).

(5) Add an edge between two red vertices of least degree (breaking ties arbitrarily) until all
red vertices have degree d.

We claim that every step is valid and that the procedure finally yields a d-regular graph G′.
Step (1) causes no issues and increases D by d if we add a new vertex. Step (2) is possible since
removing an edge increases D by 2, and #V (G) is even so D is even; we remove at most d
edges, so D increases by at most 2d. Step (3) is also fine; we add at most max{D/d, 2⌈d/2⌉}
edges at this point.

Step (4) allows all blue vertices to have degree d; since there are at least D/d red vertices,
no red vertex will have degree more than d, and since there at least d red vertices, the d − x
red vertices we choose are all distinct. Step (5) is only done if D/d < d, in which case we
have an even number of red vertices whose degrees total to D and pairwise differ by at most 1.
Adding an edge maintains the latter property, while increasing the total degree by 2. After
adding d⌈d/2⌉ − D/2 edges, the total degree is d · 2⌈d/2⌉ and so every red vertex will have
degree d.

Voilà! The end graph G′ is d-regular and has at most 1+max{3+D/d, 2⌈d/2⌉}+#V (G)
vertices. It has at least as many admissible homomorphisms as G, the latter of which has ex-
actly hom(G,Hq) admissible homomorphisms. Every admissible homomorphism is a homo-
morphism, so we have hom(G′, Hq) ⩾ hom(G,Hq) as desired.

We also use the following estimate on graph homomorphisms in our calculations.

Lemma 3.5. We have that hom(Kd,d, Hq) ⩽ 2q · c2dq .
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Proof. Suppose some vertex v inKd,d is sent to theHq-vertex with labelm, wherem is minimal.
There are two ways to choose the bipartite half of v, and vertices in this half must be sent to
Hq-vertices with labels in [m, q]. Then the other half must be sent to Hq vertices with label at
least q−m. Hence, for fixed m, there are at most 2(q−m+ 1)d(m+ 1)d homomorphisms. So
the total number of homomorphisms is at most

q∑
m=1

2(q −m+ 1)d(m+ 1)d ⩽
q∑

m=1

2

⌊
(q + 2)2

4

⌋d
= 2q · c2dq ,

since (q−m+1)(m+1) is at most (q+2)2/4 by the AM-GM inequality and is an integer.

3.2. t-tail-heavy words

In the spirit of using clusters of q’s to impose Kunz conditions, we make the following definition:

Definition 3.6. A (not necessarily Kunz) word w1 · · ·wℓ ∈ [q]ℓ is t-tail-heavy of depth q if:

• there exist n >
√
ℓ indices3 i1, . . . , in greater than ℓ− t such that wi1 = · · · = win = q;

• for any x, y ⩽ ℓ− t such that x+ y ∈ {i1, . . . , in}, we have wx + wy ⩾ q.

In essence, t-tail-heavy words of depth q are words with a large number of q’s amongst the
last t entries, restricted by the Kunz conditions arising from these q’s. We prove the following
estimate on the number of t-tail-heavy words of depth q.

Theorem 3.7. The number of t-tail-heavy words of length ℓ and depth q is at most tqtcℓ+
√
ℓ+10

q .

Proof. Abbreviate h := ℓ− t, and suppose W = w1 · · ·wℓ is t-tail-heavy of depth q. There are
at most qt ways to choose the last t entries wh+1, . . . , wℓ, so it suffices to count the number of
ways to choose WH := w1 · · ·wh. Let wi1 = wi2 = · · · = win = q with n >

√
ℓ. Any choice

of WH must have wx + wy ⩾ q if x+ y ∈ {i1, . . . , in}.
Construct a graph G with h vertices labeled 1, 2, . . . , h such that xy ∈ E(G) if

x + y ∈ {i1, . . . , in}. By the above discussion, the number of choices for WH is at most
hom(G,Hq). We cannot directly use Theorem 3.2 since G is not regular, but G has enough
vertices of degree n that we will perturb G to make an n-regular graph. Namely, every vertex
with labels t+1, . . . , h has degree n other than those with label in {i1/2, . . . , in/2}, which have
degree n − 1. Hence, we have that Dn(G) ⩽ n + nt, so by Lemma 3.4 there is an n-regular
graph G′ with

#V (G′) ⩽ 1 + max{3 +D/n, 2⌈n/2⌉}+#V (G) = 1 + (4 + t) + h = ℓ+ 5

and hom(G′, Hq) ⩾ hom(G,Hq). Now, we have that

hom(G,Hq) ⩽ hom(G′, Hq) ⩽ hom(Kn,n, Hq)
(ℓ+5)/(2n) ⩽ (2q · c2nq )(ℓ+5)/(2n)

3Here, the choice of
√
ℓ is not important; we may use any sub-

(
ℓ

log ℓ

)
function which goes to infinity as ℓ grows

large.
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by Lemma 3.5. Hence, the number of t-tail-heavy words of depth q is at most

qt
∑

√
ℓ<n⩽t

(2q · c2nq )(ℓ+5)/(2n) ⩽ qt
∑

√
ℓ<n⩽t

(c2n+2
q )(ℓ+5)/(2n)

⩽ qt
∑

√
ℓ<n⩽t

c(ℓ+5)(1+1/
√
ℓ)

q

⩽ qt
∑

√
ℓ<n⩽t

cℓ+
√
ℓ+10

q

⩽ tqtcℓ+
√
ℓ+10

q ,

as we had sought.

3.3. q-Kunz words

We are almost ready to prove Theorem 1.3. We only need a short lemma about an operation
sending q-Kunz words to (q − 1)-Kunz words.

Lemma 3.8. Ifw1 · · ·wℓ is a q-Kunz word and vi = min{q−1, wi}, then v1 · · · vℓ is (q−1)-Kunz.

Proof. For any pair (i, j)with i+j⩽ℓ, consider the quantities vi+vj and vi+j . If q − 1∈{vi, vj},
then we have vi + vj > q− 1 ⩾ vi+j . If not, then we have (vi, vj) = (wi, wj) and it follows that
vi + vj = wi + wj ⩾ wi+j ⩾ vi+j . A similar analysis is true for the case i+ j > ℓ+ 1.

Every word consisting of 1’s and 2’s is 2-Kunz, so it is not hard to see that for q = 2 the
number of numerical semigroups with multiplicity m and Frobenius number f ∈ (m, 2m)
is 2αm+O(1), where α = (f − m)/m. This will serve as our base case for the induction in
our proof; although strictly speaking Theorem 1.3 is not true for q = 2, the only important part
of the inductive step is that, asymptotically, there are fewer words of depth q − 1 than depth q.

Proof of Theorem 1.3. We prove the result by induction, with the “base case” of q = 2 (see the
above discussion). Throughout, we work directly with Kunz words of length ℓ = m− 1, and we
wish to bound the size of #Kq(f, ℓ) from below and from above.

Lower bound. Let j = f−m(q−1) = αm. Consider the family of wordsw1 · · ·wℓ governed
by the following conditions: we must have wj = q and require that wi is in the interval

• [⌊(q + 1)/2⌋, q] if i ⩽ j/2;

• [⌊q/2⌋, q] if j/2 < i < j;

• [⌊q/2⌋, q − 1] if j < i ⩽ (ℓ+ j + 1)/2; and

• [⌊(q − 1)/2⌋, q − 1] if i > (ℓ+ j + 1)/2.
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Recall from Proposition 2.3 that the Frobenius number of the words in this family is equal
to (ℓ + 1)(q − 1) + j = f . We claim these words are q-Kunz. Indeed, the Kunz conditions are
guaranteed if we havewx+wy ⩾ q orwx+wy = q−1 and x+y > j. The only other case is when
x, y > (ℓ+ j+1)/2, in which case x+ y− ℓ− 1 > j and so wx+wy +1 ⩾ q− 1 ⩾ wx+y−ℓ−1,
as desired.

There are precisely⌊
(q + 2)

2

⌋⌊j/2⌋ ⌊
(q + 3)

2

⌋⌊(j−1)/2⌋

·
⌊
(q + 1)

2

⌋⌊(ℓ−j+1)/2⌋ ⌊
(q + 2)

2

⌋⌊(ℓ−j)/2⌋

words in the constructed family. Since j = αm, we have that ⌊j/2⌋ and ⌊(j − 1)/2⌋ are
both αm/2+O(1), and ⌊(ℓ−j+1)/2⌋ and ⌊(ℓ−j)/2⌋ are both (1−α)m/2+O(1). Moreover,
we have

c2q =

⌊
(q + 2)2

4

⌋
=

⌊
(q + 2)

2

⌋⌊
(q + 3)

2

⌋
.

Hence, the left factor is cαm+O(1)
q , while the right factor is c(1−α)m+O(1)

q−1 . This is enough for the
lower bound.

Upper bound. Select ε > 0 and let t := ⌈εℓ⌉. Split the word W := w1 · · ·wℓ into
chunks Wk := wkt+1wkt+2 · · ·w(k+1)t for all nonnegative integers k with kt + 1 ⩽ ℓ; every
chunk has length t, except possibly the final chunk, and there are C+1 ⩽ ⌈1/ε⌉ chunks in total.
Say a chunk is heavy if it contains more than

√
ℓ entries equal to q. We split into cases depending

on whether some chunk is heavy.

Case 1: No heavy chunk. In this case, W is essentially (q − 1)-Kunz, namely it
does not have many q’s. Formally, each chunk has less than

√
ℓ entries equal to q,

so if t ⩾ 2⌊
√
ℓ⌋ (which is true for ℓ large), then there are at most

⌊
√
ℓ⌋∑

k=0

(
t

k

)
⩽ ⌊

√
ℓ⌋
(

t

⌊
√
ℓ⌋

)
⩽

√
ℓ(εℓ)

√
ℓ

ways to place the q’s in each chunk, for a total of at most
(√

ℓ(εℓ)
√
ℓ
)C

ways
to place the q’s overall. For each placement of q’s, we may use the operation
in Lemma 3.8 to send W to a (q − 1)-Kunz word. Given the placement of q’s,
the operation is injective, so for each placement we have at most #Kq−1(N, ℓ) ways
to select the remaining entries. The total number of Kunz words in this case is at
most

(√
ℓ(εℓ)

√
ℓ
)C

·#Kq−1(N, ℓ).

Case 2: Some heavy chunk. Select the largest k for which Wk is heavy,
that is, pick the rightmost heavy chunk. Let ℓk be the length of Wk which
is t unless (k + 1)t > ℓ. Since W has Frobenius number f , we must
have kt+ 1 < f − (ℓ+ 1)(q − 1) = α(ℓ+ 1).
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w1 wℓWk

Figure 3.1: Proof sketch when there is at least one heavy chunk (shown jagged).

The idea is to apply Theorem 3.7 to the left and right sides of Wk; see Figure 3.1,
where jagged segments indicate heavy chunks and arrows denote applications of the
t-tail-heavy result. The bolded jagged region denotes the rightmost heavy chunk.
First, note that, by definition, the word W0 · · ·Wk is ℓk-tail-heavy of depth q.
Therefore, by Theorem 3.7 we can select the first ak := kt + ℓk entries in at
most ℓkqℓkc

ak+
√
ak+10

q ways.
As for the later chunks, first fix the placement of q’s amongst the last C − k chunks
and then use the operation from Lemma 3.8 on each chunk Wk, Wk+1, . . . , WC to
obtain new chunks Vk, Vk+1, . . . , VC ; this map is injective given the placement of
the q’s. Let rev(W ) denote the reverse of the word W . Then note that the word

V ∗ := rev(Vk+1 . . . VC) rev(Vk)

is ℓk-tail-heavy of depth q − 1 by the Kunz conditions.
Hence, if we fix the placement of q’s amongst the last bk := ℓ − ak entries, there
are at most ℓkqℓkcbk+

√
bk+10

q ways to designate V ∗, which in turn designates the other
entries. Since the chunks to the right of Wk are not heavy, there are at
most

(√
ℓ(εℓ)

√
ℓ
)C−k

placements of q’s in the last bk entries. Thus, there are at

most
(√

ℓ(εℓ)
√
ℓ
)C−k

ℓkq
ℓkcbk+

√
bk+10

q ways to choose the last bk entries. The total
number of Kunz words in this case is at most∑

kt+1<α(ℓ+1)

(√
ℓ(εℓ)

√
ℓ
)C−k

(ℓk)
2q2ℓkc

ak+
√
ak+10

q cbk+
√
bk+10

q−1 .

Therefore, the quantity Kq(N, ℓ) is bounded above by the sum of the bounds from our two

cases. We now determine the asymptotics of our upper bound. The term
(√

ℓ(εℓ)
√
ℓ
)C

is subex-

ponential and, in particular, is co(ℓ)q . By the inductive hypothesis, #Kq−1(N, ℓ) is asymptotically
less than cℓq, so the total from the first case is overall subexponential. In the second case, we
have cq > cq−1 so the leading asymptotic term of the sum is when ak is maximal, in which case
we have ak = αℓ+o(ℓ), which implies bk = (1−α)ℓ+o(ℓ). Moreover, we have ℓk ⩽ t. Hence,
we can summarize the total bound in both cases as

#Kq(N, ℓ) ⩽
(
co(ℓ)q

)
+
(
ℓco(ℓ)q t2q2tcαℓ+o(ℓ)

q c
(1−α)ℓ+o(ℓ)
q−1

)
,
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where the first summand is the bound from Case 1 and the second summand is the bound from
Case 2. This is a bound of

#K(N, ℓ) ⩽ q2tcαℓ+o(ℓ)
q c

(1−α)ℓ+o(ℓ)
q−1 .

Letting ε go to 0 gives the desired bound.

Figure 3.2 depicts the relationship between the ratio f/m = q + 1 − α and the growth
rate (#Kq(f, ℓ))

1/m as m grows large. The curve is exponential piecewise, and the growth rate
approaches f/(2m) + 1 as f/m grows large. The growth rate for all f/m > 2 is new.

f/m

(#K(f, ℓ))1/m

1 2 3 4 5 6 7 8

1

2

3

4

5

Figure 3.2: The relationship between f/m and (#K(f, ℓ))1/m for large m.

4. Counting numerical semigroups by Frobenius number

4.1. General case

In 1990, Backelin [Bac90] established the following asymptotics on Frob(f), the number of
numerical semigroups with Frobenius number f .

Theorem 4.1 (Backelin [Bac90, Prop. 1]). The limits

C0 = lim
f→∞
f even

2−f/2 Frob(f), C1 = lim
f→∞
f odd

2−f/2 Frob(f)

exist and are constants.
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The proof uses the estimate that there are at most 3·2f/2 numerical semigroups withm⩾f/4,
namely with depth at most 4. In this section, we obtain an estimate akin to Backelin’s result for
numerical semigroups of arbitrary depth by proving Corollary 1.4, which coupled with Propo-
sition 2.10 implies a strengthening of Theorem 1.1.

Proof of Corollary 1.4. The result holds for q=2 and q=3 by Proposition 2.10, so assume q⩾4.
Let f be sufficiently large. Theorem 1.3 implies the number of numerical semigroups with

Frobenius number f and multiplicity m with (q − 1)m < f ⩽ qm− 1 is(
cαq c

1−α
q−1

)m+o(m)
=
(
cαq c

1−α
q−1

)f/(q−1+α)+o(f)
,

where α = f/m − (q − 1). Here, m varies over the integers in the interval
[
f+1
q
, f
q−1

)
.

Then by Corollary 2.13, the right-hand side is asymptotically maximal when α is
smallest, so when m is maximal, in which case m = ⌊(f − 1)/(q − 1)⌋. Let ℓ := m − 1 and
β := f/⌊(f − 1)/(q − 1)⌋ − (q − 1). Formally, if we let ℓ := m− 1 we have

#Kq(f,N) =
∑

m∈[ f+1
q

, f
q−1)

#Kq(f, ℓ) =
∑

m∈[ f+1
q

, f
q−1

)

(
cαq c

1−α
q−1

)f/(q−1+α)+o(f)

⩽
∑

m∈[ f+1
q

, f
q−1

)

(
cβq c

1−β
q−1

)f/(q−1+β)+o(f)

=
(
cβq c

1−β
q−1

)f/(q−1+β)+o(f)

,

by Corollary 2.13, which shows the upper bound. We also have

#Kq(f,N) =
∑

m∈[ f+1
q

, f
q−1

)

(
cαq c

1−α
q−1

)f/(q−1+α)+o(f)

⩾
(
cαq c

1−α
q−1

)f/(q−1+α)+o(f)

∣∣∣∣
m=⌊(f−1)/(q−1)⌋

=
(
cβq c

1−β
q−1

)f/(q−1+β)+o(f)

,

which shows the lower bound. We have

β =
f

⌊f−1
q−1

⌋
− (q − 1) =

f − (q − 1)⌊f−1
q−1

⌋
⌊f−1
q−1

⌋
⩽

q − 2

⌊f−1
q−1

⌋
,

so as f grows large, β tends to 0. Hence, #Kq(f,N) = (cq−1)
f/(q−1)+o(f), as desired.

From this result, we can prove that almost all numerical semigroups with Frobenius number f
are depth 2 or 3. This was first observed by Singhal [Sin22, Cor. 1], who derived the result as a
corollary of Backelin’s work [Bac90, Prop. 2].

Corollary 4.2. We have Frob(f) ∼ Frob2(f) + Frob3(f).
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Proof. Evidently Frob1(f) = 1 and f ⩾ q. We cannot directly sum the bound in Corollary 1.4
over all q ∈ [2, f ] since the o(f) term in the exponent is non-uniform as q varies. However, we
can use the uniform bound in Corollary 2.9:

Frob(f) =

f∑
q=2

Frobq(f) ⩽
100∑
q=2

Frobq(f) +

f∑
q=101

Frobq(f)

⩽
100∑
q=2

Frobq(f) +

f∑
q=101

f · qf/(q−1)

=
100∑
q=2

(cq)
f/(q−1)+o(f) +

f∑
q=101

f · qf/(q−1).

By Lemma 2.12 with r = 1, the first summand has asymptotically leading terms at q = 2
and q = 3, which are 2f/2+o(f). These terms also clearly dominate the second summand for
large f , which yields the result.

Proposition 2.10 and Corollary 4.2 collectively imply Theorem 1.1.

Proof of Theorem 1.1. By Corollary 4.2, almost all numerical semigroups have depth 2 or 3.
There are 2f/2+O(1) numerical semigroups with these depths by Proposition 2.10, as desired. To
show the constant term depends on the parity, see Corollary 4.3.

In fact, by summing over all possible ℓ, we can write down the exact values of C0 and C1

in terms of infinite sums, lifting a result of Backelin [Bac90, eq. 30] to the language of Kunz
words.

Corollary 4.3. We have that

C0 =
1

2
+

1

2

∑
j even

#K3(st, j)2
−3j/2, C1 =

1√
2
+

1

2

∑
j odd

#K3(st, j)2
−3j/2.

Proof. We simply divide the counts derived in Proposition 2.10 by the total from Theorem 1.1.

Moreover, Theorem 1.3 implies Corollary 1.5, which determines sharp asymptotics on the
number Multq(m) of depth-q numerical semigroups with multiplicity m.

Proof of Corollary 1.5. The result quickly follows from Theorem 1.3, since

Multq(m) = #Kq(N,m− 1)

=
∑

(q−1)m<f<qm

#Kq(f,m− 1) =
∑

(q−1)m<f<qm

(
cαq c

1−α
q−1

)m+o(m)

= cm+o(m)
q ,

since α = f/m− (q − 1) ranges from 1/m to (m− 1)/m and the summand is asymptotically
maximized at α = (m− 1)/m.
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4.2. MED semigroups

A numerical semigroup Λ has maximal embedding dimension (abbreviated MED) if its Apéry
set minimally generates Λ. In this case, we say Λ is an MED semigroup. In terms of Kunz words,
the Kunz word w1 · · ·wℓ is an MED Kunz word if wi+wj > wi+j and wi+wj +1 > wℓ+1−i−j .

Let MED(f) denote the number of MED semigroups with Frobenius number f , and
MEDq(f) the number of semigroups with Frobenius number f and depth q. In 2022, Sing-
hal [Sin22] proved that there are constants c and c′ such that

c · 2f/3 < MED(f) < c′ · 20.41385f ,

and conjectured that limf→∞ log2(MED(f))/f exists. He also notes that numerical data sug-
gests that the limit may be around 0.375. We prove this conjecture by showing this limit to be
exactly 1/3 in Corollary 1.6, which turns out to be significantly smaller than the value suggested
by numerical calculations for small values of f .

Given an MED Kunz word w1 · · ·wℓ, if we set vi = wi − 1, then v1 · · · vℓ also satisfies
the Kunz conditions. It follows quickly that there is a bijection between MED semigroups of
multiplicity m and numerical semigroups containing m (or their corresponding Kunz words);
we mark down the latter condition by using the notationFrob{m} andK{m} in lieu ofFrob andK.
As a result, we have the following sum.

Lemma 4.4 ([Sin22, Cor. 3]). We have that

MEDq(f) =
∑

m∈Mf,q

Frob{m}(f −m),

where Mf,q :=
[
f+1
q
, f+1
q−1

)
∩ N.

Note that the numerical semigroups counted on the right-hand side have depth q′, which is
at most ⌈(f + 1 − m)/m⌉ = q − 1, since the multiplicity of these semigroups is at most m.
Unfortunately, the notation in this section is a bit confusing since we juggle MED semigroups
and words in K{m}(f−m). We will consistently refer to the multiplicity of the MED semigroup
by m and the multiplicity of the corresponding depth-q′ word by m′ = ℓ + 1, where ℓ is the
length of the word. We try to remind the reader of this when possible.

We bound the number of MED semigroups for all depths q and show that almost all MED
semigroups are depth 3 or 4. To do this, we use Lemma 4.4, which allows us to apply our
bounds for general numerical semigroups to MED numerical semigroups, lifting Theorem 1.3
to Corollary 1.6. This is most important in Lemma 4.8, where we estimate the number of MED
semigroups with depth at least 4. The case of q = 1 is vacuous, so we first consider q = 2.

Proposition 4.5. We haveMED2(f) ∼ Di·2f/4 for constantsD0, . . . , D3 where f ≡ i (mod 4).

Proof. By Lemma 4.4, we have

MED2(f) =
∑

m∈Mf,2

Frob{m}(f −m) =

⌊(f−1)/2⌋∑
k=1

Frob(k),
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since m > f−m. Then we are done; we can express Di in terms of C0 and C1 by Corollary 4.3.

Remark 4.6. It happens that MED2(f) is the sequence A103580 in the OEIS with each entry
repeated twice; the OEIS sequence counts how many nonempty subsets of {1, . . . , n} contain all
its pairwise sums that are at most n, which is exactly the number of nontrivial semigroups with
Frobenius number at most n. Hence, A103580(n) = 2n/2+O(1), which is (as far as we know) a
new result that answers a question of Kitaev on well-based sets on path-schemes [Kit06].

We now estimate the number of MED semigroups of depth at least 3.

Proposition 4.7. We have MED3(f) = 2f/3+O(1).

Proof. We show the lower and upper bounds separately.
Lower bound. Let m = ⌈(f + 1)/3⌉ and abbreviate n := f −m = 2f/3 +O(1). Consider

the following families of 2-Kunz words with Frobenius number n:

• M = {w1 · · ·w(n−4)/221 : wi ⩽ 2} if n is even; and

• M = {w1 · · ·w(n−3)/22 : wi ⩽ 2} if n is odd.

These families consist of 2(n−4)/2 and 2(n−3)/2 words, respectively. Since the restriction of con-
taining m forces at most one entry in a Kunz word to take the value 2, at least half of the words
in M correspond to semigroups containing m, so MED3(f) ⩾ 2(n−4)/2−1, which is enough.

Upper bound. Note that

MED3(f) =
∑

m∈Mf,3

Frob{m}(f −m) ⩽
∑

m∈Mf,3

Frob(f −m,N)

=
∑

m∈Mf,3

2(f−m)/2+O(1) = 2f/3+O(1),

as desired.

Lemma 4.8. For q ⩾ 4, we have that

lim sup
f→∞

MEDq(f)
1/f ⩽ (cq−2)

1/(q−1) .

Proof. Note that

MEDq(f) =
∑

m∈Mf,q

Frob{m}(f −m)

⩽
∑

m∈Mf,q

Frob
{m}
q−1 (f −m) +

∑
m∈Mf,q

q′⩾q

Frobq′(f −m)

=
∑

m∈Mf,q

Frob
{m}
q−1 (f −m) +

∑
m∈Mf,q

q′⩾q

(cq′−1)
(f−m)/(q′−1)+o(f),

http://oeis.org/A103580
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the last equality by Corollary 1.4. We have the inequality

f −m

q′ − 1
⩽

f − (f + 1)/q

q′ − 1
< f · q − 1

q(q′ − 1)
.

Hence, the second summand can be bounded:∑
m∈Mf,q

q′⩾q

(cq′−1)
(f−m)/(q′−1)+o(f) ⩽

∑
m∈Mf,q

q′⩾q

(
c
1/(q′−1)
q′−1

)f(q−1)/q+o(f)

⩽
∑

m∈Mf,q

(cq−1)
f/q+o(f),

since c
1/(q′−1)
q′−1 is maximized at q′ = q by Lemma 2.12 with r = 0. The lemma also implies

that c1/qq−1 < c
1/(q−1)
q−2 , so it suffices to show the upper bound on the first summand only.

Letting α = (f − m)/m′ − (q − 2), we write the following equalities, the second given
by Theorem 1.3:∑

m∈Mf,q

Frob
{m}
q−1 (f −m) =

∑
m∈Mf,q

∑
m′⩽m

#K{m}
q−1 (f −m;m′)

=
∑

m∈Mf,q

∑
m′⩽m

(
cαq−1c

1−α
q−2

)m′+o(m′)

=
∑

m∈Mf,q

∑
m′⩽m

(
c
f−m−(q−2)m′

q−1 c
(q−1)m′−(f−m)
q−2

)1+o(1)

.

Lemma 2.12 for r = 0 tells us that for fixed m, the summand is maximized when m′ = m, at
which point the summand is equal to(

c
f−(q−1)m
q−1 cqm−f

q−2

)1+o(1)

=
(
c
f/m−q+1
q−1 c

q−f/m
q−2

)m+o(m)

.

If we let m = (f + 1)/(q− 1 + r), then Corollary 2.13 tells us that the summand is maximized
at r = 0, at which point the summand is cf/(q−1)+o(f)

q−2 . This is enough to show the upper bound.

We now derive Corollary 1.6.

Proof of Corollary 1.6. Proposition 4.7 gives the lower bound. As for the upper bound, we
cannot sum over all q by the same analytic issue as the previous section, so Corollary 2.9 will
be of use to us. Namely, we can write

MED(f) =

f∑
q=2

MEDq(f) =
100∑
q=2

MEDq(f) +

f∑
q=101

MEDq(f)

⩽
100∑
q=2

MEDq(f) +

f∑
q=101

f · qf/(q−1)

= 2f/3+O(1) +
100∑
q=4

(cq−1)
f/(q−2)+o(f) +

f∑
q=101

f · qf/(q−1),
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where the last line is given by Proposition 4.5, Proposition 4.7, and Lemma 4.8. By Lemma 2.12
for r = 1, the leading terms are at q = 3 and q = 4, which are 2f/3+o(f). These terms also clearly
dominate the second summand for large f , which yields the result.

Remark 4.9. The proof relies on Lemma 2.12, and in particular the fact that c1/43 = 61/8 < 21/3,
which is surprisingly sharp given that 21/3 − 61/8 ≈ 8.8 · 10−3. Hence, we esssentially need the
full strength of Theorem 1.3 for q = 3; the naive bound from Remark 2.11 and the bound of
Backelin [Bac90, eq. 13] give constants of 81/8 and (22/3)1/8, respectively, which are certainly
not enough.

It should be possible to write down an analogue of Proposition 2.10 for MED semigroups
of depth 3 and 4, which would improve the bound to 2f/3+O(1) and yield a result analogous
to Corollary 4.3 but with constant factor depending on f (mod 6). However, we do not execute
this here.

5. Distributions on numerical semigroups

In this section, we discuss the distribution of multiplicity and genus over numerical semigroups
with fixed Frobenius number.

5.1. Distribution of multiplicity

To begin, it turns out that our analysis in Proposition 2.10 immediately implies the following
distribution result.

Theorem 5.1. Let Λf be a random numerical semigroup with Frobenius number f (under the
uniform distribution). Then for any integer k, we have that:

lim
f→∞
f even

P[f − 2m(Λf ) = 2k] =


C−1

0 2k−1 if k < 0,

0 if k = 0,

C−1
0 2−3k−1#K3(st; 2k) if k > 0;

lim
f→∞
f odd

P[f − 2m(Λf ) = 2k + 1] =

{
C−1

1 2(2k−1)/2 if k < 0,

C−1
1 2−(6k+5)/2#K3(st; 2k + 1) if k ⩾ 0.

This is similar to a result of Zhu [Zhu23, Thm. 6.1], which determines the limiting distribu-
tion of f − 2m for numerical semigroups of fixed genus. Figures 5.1 and 5.2 depict the limiting
distributions for even and odd f , respectively.

Proof. By Corollary 4.2, we only have to consider semigroups of depth 2 and 3. Now, we may
use Proposition 2.10 and the fact that there are (Ci + o(1))2f/2 numerical semigroups with
Frobenius number f to prove the result, where f ≡ i (mod 2).

This is a strengthening of the following result of Backelin, which shows that asymptotically,
almost all semigroups have multiplicity close to f/2:



combinatorial theory 3 (3) (2023), #6 21

f − 2m-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

1
4C0

Figure 5.1: Limiting distribution of f − 2m for even f .

f − 2m-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

1
2C1

√
2

Figure 5.2: Limiting distribution of f − 2m for odd f .

Proposition 5.2 (Backelin [Bac90]). For any ε > 0, there exists an integer N such that for
every positive integer f , there are less than ε · 2f/2 semigroups with Frobenius number f and
multiplicity outside of [f/2−N, f/2 +N ].

As a corollary, we can show the following result on the average multiplicity of a numeri-
cal semigroup with Frobenius number f . This partially relies on the fact that #K3(st, 2k) is
exponentially less than 8k by Theorem 1.3.

Corollary 5.3. Let Λf be a random numerical semigroup with Frobenius number f . Then there
are constants µ0 and µ1 such that as f grows large, the average value of m(Λf ) − f/2 ap-
proaches µ0 for f even and µ1 for f odd.

Proof. We show the result for f even; the odd case is analogous. By Theorem 5.1, as f grows
large, the average multiplicity tends to∑

k<0

C−1
0 2k−1 ·

(
1

2
f − k

)
+
∑
k>0

C−1
0 2−3k−1#K3(st, 2k) ·

(
1

2
f − k

)

=
f

2
+

(∑
k<0

C−1
0 2k−1 · (−k) +

∑
k>0

C−1
0 2−3k−1#K3(st, 2k) · (−k)

)
.

The right summand consists of the sum of two series. The first is a arithmetico-geometric series
with ratio 1/2, while the second converges since Corollary 1.5 implies #K(st, 2k) = 6k+o(k).
Hence, the right summand converges to some constant µ0, as desired.
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While we cannot prove a fine distribution result for semigroups of arbitrary depth, we can
still show almost all depth-q numerical semigroups with Frobenius number f have multiplicity
close to f/(q − 1).

Theorem 5.4. For q ⩾ 3, let Λf,q be a random depth-q numerical semigroup with Frobenius
number f (under the uniform distribution). Then, for any ε > 0, we have

lim
f→∞

P(|f − (q − 1) ·m(Λf,q)| < εf) = 1.

Proof. We will show the proportion of numerical semigroups with f − (q − 1)m ⩾ εf ap-
proaches 0. Recall from Theorem 1.3 that the number of numerical semigroups with Frobenius
number f and multiplicity m is(

cαq c
1−α
q−1

)m+o(m)
=
(
cαq c

1−α
q−1

)f/(q−1+α)+o(f)
,

where α = f/m − (q − 1) ⩾ ε. By Corollary 2.13, this quantity is asymptotically maximal
when α = ε. Hence, the proportion of numerical semigroups with f − (q − 1)m ⩾ εf is∑

f−(q−1)m⩾εf

(
cαq c

1−α
q−1

)m+o(m)
⩽

∑
f−(q−1)m⩾εf

(
cεqc

1−ε
q−1

)m+o(m)
=
(
cεqc

1−ε
q−1

)f/(q−1+ε)+o(f)
.

The total number of depth-q numerical semigroups with Frobenius number f is (cq−1)
f/(q−1)+o(f)

by Theorem 1.3, which dominates the right-hand side as f grows large. So the proportion we
sought is indeed 0.

5.2. Distribution of genus

Our results on multiplicity can be used to deduce results on the genus of numerical semigroups
with fixed Frobenius number. We first show the following distribution result on the genus of a
numerical semigroup with fixed Frobenius number. The limiting distribution is binomial in the
following sense.

Theorem 5.5. Let Λf be a random numerical semigroup of Frobenius number f . Then as f
grows large, the distribution of

1√
f

(
g(Λf )−

3f

4

)
is the standard normal distribution.

This strengthens a result of Singhal, who describes the limiting distribution of genus with re-
spect to Frobenius number in terms of a normal distribution and an infinite sum [Sin22, Thm. 14].

Proof. By Corollary 4.2, we only have to consider depth-2 and depth-3 semigroups, which were
characterized in Proposition 2.10 and Theorem 5.1. In particular, almost all numerical semi-
groups of depth 2 are of the form

w1 · · ·wf−m−1︸ ︷︷ ︸
1’s and 2’s

21 · · · 1, m = f/2 + o(
√

f).
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For this family of words, since the last o(
√
f) entries equal to 1 are asymptotically negligible,

we have
1√
f

(
g(Λf )−

3f

4

)
=

1√
f

(
f−m−1∑

i=1

(wi − 3/2)

)
+ o(1),

which is the standard normal distribution by the Central Limit Theorem. Similarly, almost all
3-Kunz words are of the form

w1 · · ·wf−2m−1︸ ︷︷ ︸
in K3(st;f−2m−1)

3wf−2m+1 · · ·wm−1︸ ︷︷ ︸
1’s and 2’s

, m = f/2− o(
√
f).

For this family of words, the first f−2m−1 = o(
√
f) entries are also asymptotically negligible,

in the sense that we also have

1√
f

(
g(Λf )−

3f

4

)
=

1√
f

(
m−1∑

i=f−2m+1

(wi − 3/2)

)
+ o(1).

The distribution of this quantity also is standard normal, as desired.

Moreover, Singhal [Sin22, Thm. 1.2] shows the average genus of numerical semigroups
with Frobenius number f is 3f

4
+ o(f). We strengthen this to an O(1)-level estimate, similarly

to Corollary 5.3.

Theorem 5.6. Let Λf be a random numerical semigroup with Frobenius number f . Then there
are constants γ0 and γ1 such that as f grows large, the average value of g(Λf )− 3f

4
approaches γ0

for f even and γ1 for f odd.

Proof. We show the result for f even; the odd case is similar. By Corollary 4.2, we only have
to consider depth-2 and depth-3 semigroups, which were characterized in Proposition 2.10 and
Theorem 5.1.

First, we consider the numerical semigroups with depth 2, which have Kunz words of the
form w1 · · ·wf−m−121 · · · 1, where w1, . . . , wf−m−1 ∈ [2] and m > f/2. This family of words
has an average genus of (f −m − 1) · 3

2
+ 2 + (2m − f − 1) · 1 = 1

2
(f +m − 1). By Theo-

rem 5.1, the proportion of numerical semigroups with Frobenius number f that have multiplic-
ity m = f/2− k is C−1

0 2k−1 for k < 0. Thus, as f grows large, the depth-2 contribution to the
overall average genus approaches∑

k<0

C−1
0 2k−1 ·

(
3f − 2k − 2

4

)
.

Similarly, depth-3 semigroups have Kunz words of the form w1 . . . wm−1, where:

• w1 · · ·wf−2m−1wf−2m ∈ K3(st; f − 2m− 1), and

• wf−2m+1, . . . , wm−1 ∈ [2].
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Let Gj :=
1

#K3(st,j)

∑
W∈K3(st,j)

g(W ) denote the average genus of the Kunz words in K3(st, j).
Then for fixed f and m, the average genus of a numerical semigroup with Frobenius number f
and multiplicity m is Gf−2m + (3m − f − 1) · 3

2
. Letting k = 1

2
(f − 2m), these semigroups

comprise C−1
0 2−3k−1#K3(st; 2k) of all semigroups with Frobenius number f , so the depth-3

contribution to the overall average genus approaches∑
k>0

C−1
0 2−3k−1#K3(st; 2k) ·

(
2G2k + 3f − 18k − 6

4

)
.

Hence, the overall average genus is∑
k<0

C−1
0 2k−1 ·

(
3f − 2k − 2

4

)
+
∑
k>0

C−1
0 2−3k−1#K3(st; 2k) ·

(
2G2k + 3f − 18k − 6

4

)

=
3f

4
+

(∑
k<0

C−1
0 2k−1

(
−k − 1

2

)
+
∑
k>0

C−1
0 2−3k−1#K3(st; 2k) ·

(
2G2k − 18k − 6

4

))

It suffices to show that the right summand in parentheses converges to some constant γ0. The
first summation clearly converges, and the second summation also converges since Gj ⩽ 3j,
and #K3(st; 2k) = 6k+o(k) by Theorem 1.3 for q = 3. Hence, we have the desired result.

6. Future directions

In this section, we discuss our results and some possible directions of future study.

6.1. Subexponential factor

In this paper, we prove many results that pin down the exponential growth factor but do not
estimate the subexponential factor. Our bounds are of the form Cn+o(n), so it would be nice to
sharpen these to a polynomial factor p(n)Cn or even a constant factor A · Cn.

For instance, Theorem 1.3 implies that #K3(st, ℓ) = 6ℓ/2+o(ℓ), but we write down rough
ℓO(

√
ℓ)-level upper bounds on the 6o(ℓ) factor while our construction only gives 6ℓ/2+O(1) Kunz

words. Reconciling these bounds would yield a better understanding of the structure of 3-Kunz
words. Table A.1 lists #K3(st, ℓ) for ℓ ⩽ 56 due to Zhu [Zhu23, §7.1], while Figure A.1 graphs
the quantity 6−ℓ/2 ·#K3(st, ℓ). It is unclear whether we should expect the subexponential factor
to be constant, linear, or another function altogether.

Since #K3(N, ℓ) =
∑ℓ

j=0 2
ℓ−j#K3(st, j), better bounds on #K3(st, ℓ) automatically give

better bounds on #K3(N, ℓ). Sharpening these bounds could help resolve a question of Ka-
plan [Kap17], who asks whether limk→∞ Frob(2k)/Frob(2k−1) =

√
2 ·C0/C1 is greater than,

less than, or equal to 1. Backelin [Bac90, eq. 13] proves the weaker but computationally useful
bound

#K3(st, ℓ) ⩽ 2⌊
3ℓ−3

2 ⌋
(
11

12

)⌊ ℓ−1
2 ⌋

.
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Corollary 4.3 expresses Ci as an infinite sum. We can take partial sums using Table A.1 to get a
lower bound onCi, and also use Backelin’s bound to get an upper bound onCi. This method gives

1.2606 < C0 < 1.3919, 1.2755 < C1/
√
2 < 1.4068,

which are a modest improvement to Backelin’s original bounds4 [Bac90, §I.3]. The numerics of
the partial sums suggest that C0 < C1/

√
2, so we surmise that Kaplan’s limit is less than 1.

Of course, the larger question of finding the subexponential factor of #Kq(N, ℓ) or Frobq(f)
for general q is also open. Results of this form could strengthen the asymptotics of Theo-
rem 1.1 to lower-order terms, and could sharpen Theorem 5.4 to an O(1)-level distribution
like Theorem 5.1. To get a sense of the magnitude of the subexponential factor in the gen-
eral case, we have included the values of #K(f,m − 1) for small values of f and m in Ta-
ble A.2, and we have graphed the values of (#K(f,m− 1))1/m against f/m for these values
in Figure A.2. The values for m = 8, 10, 12 were acquired with the numericalsgps GAP
package, while the values for m = 15 were calculated with a program similar to Zhu’s program
to compute #K3(st, ℓ) [Zhu23, §7.1].

6.2. Other statistics

There are many classes of numerical semigroups other than MED semigroups that remain to be
counted. Backelin shows that the number of irreducible semigroups, or semigroups that are not
the intersection of two other semigroups, with Frobenius number f is 2f/6+O(1). These have a rel-
atively natural description in terms of Kunz words, so our methods may adapt to questions of this
type. There are similar parametrizations in terms of Kunz words for Arf [GSHKR17] and ato-
mic [RPR19] numerical semigroups, which could also be counted. We also do not compute the
subexponential term for the number of MED numerical semigroups; fwe expect that, or fixed q,
one could obtain sharper bounds for MEDq(f) akin to Corollary 1.4 and Proposition 2.10.

We do not thoroughly study the genus of numerical semigroups in this paper. Zhu [Zhu23]
shows the number of semigroups with genus g and depth at least 4 has exponential growth
rate between 1.51 and 1.55 and conjectures the true growth rate to be the unique positive zero
of x6 − x3 − 2x2 − 2x − 1 with value near 1.51519. Our methods work well for tail-heavy
words, but there seem to be fundamental obstructions to our estimates when a q-Kunz word has
its rightmost heavy chunk near the middle of the word or has no heavy chunks at all. Results in
this direction could shed light on the remaining size conjectures of Bras–Amorós [BA07]; for
more info, see the final section of [Zhu23].

6.3. Polychromatic Schur problems

In this paper, we bound the size of K3(N, ℓ), which is the set of words w1 · · ·wℓ such that there
are no i, j with wi = wj = 1 and wi+j = 3. We can rephrase this suggestively as an additive
combinatorics question about colorings.

Question 6.1. How many ways can {1, 2, . . . , n} be colored red, green, and blue so that a red
number plus a red number is never a blue number?

4Backelin originally proves 1.235 < C0 < 1.65 and 1.25 < C1/
√
2 < 1.66; see pg. 210 (their constants differ

from ours by a factor of 2).
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Recall that x, y, z ∈ [n] (not necessarily distinct) form a Schur triple if x+ y = z. Then the
above question is equivalent to avoiding a Schur triple with x, y red and z blue. Corollary 1.5
for q = 3 implies there are 6n/2+o(n) such colorings. Many questions can be rephrased in terms
of colorings and Schur triples:

• With two colors, black and white, sum-free sets are equivalent to black + black ̸= black
and numerical semigroups are equivalent to black+ black ̸= white.

• With k colors and sufficiently large n, we cannot color [n] to avoid color + color = color
for every color by Schur’s theorem.

• With three colors, avoiding red+blue = green and permutations is equivalent to avoiding
rainbow Schur triples [CJL+23].

The typical language of independent sets and hypergraph containers [BMS19] has interesting
applications in the polychromatic case via the language of color templates in [CJL+23]. We
study the above question in its own right via the lens of graph homomorphisms and hypergraph
containers in future work.
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A. Sample data on #Kq(f, ℓ)

ℓ #K3(st, ℓ) ℓ #K3(st, ℓ) ℓ #K3(st, ℓ) ℓ #K3(st, ℓ)
1 1 15 636988 29 269006491243 43 93330716828074728
2 2 16 1264258 30 514570562660 44 182169304991649599
3 7 17 4215132 31 1675924761549 45 563400466799404781
4 14 18 8051166 32 3260563309970 46 1123123932176762798
5 50 19 26991332 33 10226788893396 47 3515289384328363733
6 96 20 52219388 34 20391731774615 48 6748185987886118499
7 343 21 167869363 35 64492588219388 49 21482645364583893141
8 667 22 335811042 36 123297229488909 50 42180209153883948485
9 2249 23 1088912364 37 399014138303512 51 129644921982559989678

10 4513 24 2061900838 38 783212435011160 52 256751992776208115484
11 15349 25 6827159829 39 2425228785559883 53 803119580525790882344
12 28897 26 13424984452 40 4789418078046239 54 1553823126150392917494
13 100425 27 42195919228 41 15182994877727803 55 4893440472071899127094
14 197268 28 83374340587 42 29235444078764327 56 9583422277969715823101

Table A.1: Table of #K3(st, ℓ) for ℓ ⩽ 56, due to Zhu [Zhu23, §7.1].
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Figure A.1: Graph of 6−ℓ/2 ·#K3(st, ℓ) versus ℓ for ℓ ⩽ 56.
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f m 8 10 12 15
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 1 0 0 0

10 2 0 0 0
11 4 1 0 0
12 8 2 0 0
13 16 4 1 0
14 32 8 2 0
15 64 16 4 0
16 0 32 8 1
17 64 64 16 2
18 64 128 32 4
19 112 256 64 8
20 112 0 128 16

f m 8 10 12 15
21 200 256 256 32
22 192 256 512 64
23 343 448 1024 128
24 0 448 0 256
25 382 800 1024 512
26 334 768 1024 1024
27 561 1372 1792 2048
28 450 1334 1792 4096
29 850 2249 3200 8192
30 676 0 3072 0
31 1210 2664 5488 8192
32 0 2223 5336 8192
33 1285 3819 8996 14336
34 1093 3402 9026 14336
35 1810 5481 15349 25600
36 1394 4703 0 24576
37 2426 8471 17913 43904
38 2004 6992 15891 42688
39 3251 11859 25309 71968
40 0 0 23316 72208

f m 8 10 12 15
41 3623 13081 39888 122792
42 2871 10985 31378 115588
43 4758 18110 57967 200850
44 3450 15139 49397 197268
45 6045 23772 80208 0
46 4833 20803 72222 212355
47 7956 33328 122602 334256
48 0 27434 0 306617
49 8441 45180 134412 495251
50 6750 0 118138 482970
51 10586 49330 173933 697846
52 7781 40729 156928 716142
53 13340 65554 255440 1078547
54 10409 53231 202025 993543
55 16749 81087 346341 1570166
56 0 68858 292872 1538669
57 17766 109712 441032 2193066
58 14017 90045 402170 2204659
59 22161 143912 636627 3327962
60 15625 0 0 0

Table A.2: Values of #K(f,m− 1) for m = 8, 10, 12, 15 and f ⩽ 60.

f/m

(#K(f,m− 1))1/m

1 2 3 4 5 6 7 8
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Figure A.2: The relation between f/m and (#K(f,m− 1))1/m for m = 8, 10, 12, 15.
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