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Abstract

During earthquake ground shaking earth pressures on retaining structures can cyclically increase and decrease as a result of
inertial forces applied to the walls and kinematic interactions between the stiff wall elements and surrounding soil. Limit
equilibrium analysis imposes a pseudo-static inertial force to a soil wedge behind the wall (the mechanism behind the
widely-used Mononobe-Okabe method), which is a poor analogy for either inertial or kinematic wall-soil interaction. Many
basement walls and retaining structures are dominated by kinematic soil-structure interaction (SSI) effects arising from
differences in displacement between the wall and the free-field soil.  Kinematic SSI solutions are often formulated for
uniform soil conditions, but the shear modulus of most soils is known to increase with mean effective stress, and therefore
with depth. We examine the influence of vertical heterogeneity of shear modulus on kinematic SSI for rigid walls. An
existing  free-field  displacement  solution  is  presented  first,  followed by analysis  of  earth  pressure  increments  using  a
Winkler assumption. Vertical heterogeneity is shown to reduce seismic earth pressures compared with a uniform soil case
(for a given frequency and peak ground surface displacement) because free-field displacements are largest near the surface,
where the soil is softest and Winkler stiffness is lowest. The proposed Winkler solution is then compared with an exact
analytical solution for vertically heterogeneous soil over a rigid base and retained between two opposing rigid walls. The
agreement is imperfect, but reasonable, with differences likely due to assumptions regarding the dynamic Winkler stiffness
intensity.

Keywords: soil-structure interaction, retaining walls, seismic earth pressure, Winkler
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1. Introduction

The increment of lateral earth pressure that should be applied to a retaining wall to account for earthquake
effects  is  currently  a  source  of  confusion  among design  professionals.  Current  guidelines  documents  (e.g.,
NCHRP 2008)  utilize  a  limit  equilibrium analysis  in  which a  pseudo-static  coefficient  acts  upon an  active
Coulomb-type wedge in frictional soil. Based on the classical work of Okabe [2] and Mononobe and Matsuo [3],
this approach is widely known as the Mononobe-Okabe (M-O) method. Variants of the M-O method have been
proposed by [4], [5], [6], [7] and [8], all of which are rooted in the limit equilibrium analysis framework. 

Recent experimental research has challenged the M-O method as being overly conservative (e.g.,  [9],  [10]),
while elastodynamic solutions have found seismic earth pressures may significantly exceed those prescribed by
the M-O method (e.g.,  [11],  [13],  [12],  [17],  [18],  [20]). These conflicting findings have driven much of the
confusion among the engineering community regarding seismic earth pressures. A fundamental problem with the
M-O method is that it does not adequately reflect the manner in which vibrating soil interacts with a retaining
structure. Though the elastodynamic solutions are better equipped to capture this  interaction,  they are often
formulated for conditions where a rigid base underlies an elastic soil layer being retained by a rigid wall over its
full thickness (i.e., a “bathtub” condition). These boundary conditions result in significant amplification at the
resonant modes of the soil column, which in turn produce large relative wall-soil displacements and seismic
earth pressures. 

A kinematic  soil-structure  interaction  solution  developed by [14]  demonstrates  that  kinematic  seismic earth
pressures are fundamentally controlled by relative wall-soil displacements, which in turn are controlled by the
ratio of the wavelength of the vibrating free-field soil column, , to the height of the wall, H. When /H is large,
the free-field shear strain acting along the wall height  is  small,  the  wall and free-field soil  move nearly in
tandem, and the kinematic earth pressures are also small. Walls resting on thick soil layers excited by earthquake
ground motions typically exhibit large /H ratios, resulting in small earth pressures. This was the condition in
the recent experimental studies for which smaller-than-M-O pressures were measured. Conversely, the bathtub
condition results in significant energy at the first mode frequency of the soil column (which occurs at /H = 4 for
uniform elastic  soil),  generating large,  greater-than-M-O, seismic earth pressures.  The kinematic  framework
presented  by  [14] explains  both  the  experimental  observations  and  elastodynamic  solutions  in  a  single
framework.

A number of simplifying assumptions were made in deriving the kinematic solution for seismic earth pressures
by [14]. First, the soil was modeled as an isotropic elastic homogeneous material. The shear modulus of soil is
known to vary with effective confining pressure, therefore this assumption is generally not representative of
typical soil profiles. Second, the wall was modeled as rigid, whereas basement walls and free-standing retaining
walls  may have sufficient  flexibility  to  influence mobilized  earth pressures.  Third,  soil  inelasticity  was not
modeled explicitly,  though strain-compatible  moduli  can be selected to render the  method equivalent-linear.
Finally, gapping and shear slip at the soil-wall interface was not modeled. The focus of this paper is to explore
the influence of vertical heterogeneity of the shear modulus on the mobilization of seismic earth pressures. To
facilitate comparisons to exact analytical solutions in the literature ([17], [18]) solutions are developed herein for
rigid walls fixed to a rigid base layer (e.g., the bathtub condition), though the solution framework for handling
vertical  heterogeneity is  easily  adaptable to deeper soil  conditions. The framework for  computing free-field
displacements and seismic earth pressures is presented first, followed by comparison with an exact analytical
solution. Elastodynamic solutions for flexible walls, soil inelasticity, gapping, and interface slip is reserved for
future publications.

2. Solution for Free-Field Displacement in Vertically Heterogeneous Soil

An analytical solution for vertical shear waves propagating through a soil layer with  VS varying vertically in
accordance with Eq. 1 was developed by [15], where  VH is the shear wave velocity at the bottom of the layer
(depth = H), Vo is the shear wave velocity at the ground surface, z is depth, and n is an exponent controlling the
rate of change of  VS with depth. Solutions were developed for the vertically heterogeneous layer resting on a
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rigid base, and for a vertically heterogeneous layer resting on a uniform elastic layer on a rigid base. The former
solutions are utilized herein. 
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The analytical solution for the free-field soil displacement,  uff, is given by Eq. 2, where  Jv2() and Nv2() denote
Bessel functions of the first and second kind, respectively, of order v2. Note that Vr is the shear wave velocity at
a reference depth, zr. For simplicity, zr can be set equal to H, in which case Vr = VH.
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The modal frequencies are obtained by solving the characteristic equation (Eq. 3), where m=0,1,2… corresponds
to the different modes. The roots of Eq. 3 correspond to the modal frequencies, and require solution of m and
subsequently substituting m into Eq. (4).
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Fig. 1 illustrates five velocity profiles corresponding to a vertically heterogeneous layer resting on a rigid base
for various values of n, and for b = 0.01. The value of VH was selected such that the time-averaged shear wave
velocity, VS,av is constant for all five profiles, as illustrated using Eq. (5). The first-mode frequency of a soil layer
is often computed as f0 ≈ VS,av/4H, which is not analytically rigorous but provides a reasonable approximation in
many cases, and avoids the complexity of finding the roots of Eq. 3. For the case shown in Fig. 1, the ratio f0/
(VS,av/4H) = (1.0, 1.047,1.089,1.086,0.987,0.847) for n = (0.0, 0.1, 0.25, 0.5, 0.75, 0.9). The average shear wave
velocity for this profile is defined as:
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The first mode shapes depend significantly on n. The first mode shape with n=0.1 is approximately equal to the
first mode shape for a uniform layer (n=0) with shear strains being largest near the base of the layer, while the
mode shape for n=0.5 is nearly linear with shear strains being approximately constant, and the mode shape for
n=0.9 exhibits small displacements near the base and the highest strains at shallow depths ([19]).

 

Fig. 1 – Normalized shear wave velocity and first-mode displacement for vertically heterogeneous layer resting
atop a rigid base. All profiles have a constant VS,av (after [15]).

3. Winkler Stiffness Intensity Approximation

The lateral stiffness associated with wall-soil interaction is represented by stiffness intensity ky
i, which has units

of stiffness/area. The  solution for kinematic seismic earth pressures by [14] requires the use of expressions for
ky

i, which was uniform with depth due to the homogeneous soil assumption. 

For the present application, we use an approximate ky
i solution from [16]. This solution applies for a rigid wall of

height  H resting on a rigid base and supporting uniform elastic soil subjected to excitation from the base. The
derived solution for ky

i is frequency-dependent, which is expressed as a function of the dimensionless frequency,
ao  =  H/VS

*, and a dimensionless cutoff frequency,  aoc, which is equal to  /2 for the harmonic shape functions
adopted by [16]. Note that  VS* = VS·(1+2iD)0.5 is the complex shear wave velocity incorporating the effects of
frequency-independent material damping D. Because VS

* varies with depth, a representative value of VS
* = (4Hfn)

was selected for computing  ao, where  fn is the first-mode frequency computed using Eq. (4). This value was
selected because a uniform soil profile with VS

* would produce the same first mode frequency as the vertically
heterogeneous profile. To account for vertical heterogeneity in the stiffness intensity term, we adjust the form
proposed by [16] such that ky

i is a function of depth, and is directly proportional to G(z) = VS(z)2, where  is
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mass density and  G is shear modulus. Though this approximation is not analytically rigorous,  an alternative
relationship is not currently available for heterogeneous soil profiles. The assumed relation for ky

i(z) is given by
Eq. 7, where  is the Poisson ratio.
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An average value of Winkler stiffness intensity, ky
i
av is obtained by substituting VS,av for VS(z) in Eq. (7).

4. Example Kinematic SSI Solutions

Example solutions are presented in this section for the seismic earth pressure imposed on a rigid wall by a
vertically heterogeneous profile. Various values of the vertical heterogeneity exponent, n, are used to illustrate its
influence on seismic earth pressure. The seismic earth pressure increment is computed using Eq. (8), while the
resultant, PE, is computed using Eq. (9) and the normalized height of the resultant, h/H, is computed using Eq.
(10).
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Pressure  distributions  are  presented  in  Fig.  2  in  terms  of  the  horizontal  seismic  pressure  increment,  yy

normalized by  ky
i
avug0 associated with the  first-mode resonant  frequency of the  free-field  soil  column. As  n

increases, the seismic earth pressures decrease significantly, particularly at shallow depths, and the centroid of
the resultant force shifts  downward. These differences are attributed to the mode shapes combined with the
depth-variation in  ky

i. For high  n values, the mode shapes in Figure 1 show that free-field displacements are
small near the base of the profile, where ky

i is large, and large near the surface of the profile where ky
i is small.
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Fig. 2 –  Dimensionless horizontal seismic earth pressure increment versus dimensionless depth for vertically
heterogeneous soil profiles acting against a rigid vertical wall.

Transfer functions relating the amplitude of the dimensionless seismic earth pressure resultant, PE, to av/H are
shown in  Fig.  3,  where  av =  VS,av/f.  As  n increases,  the  rightmost  peak of the  transfer functions decreases
significantly in amplitude, as anticipated by the reductions in earth pressures over the upper portion of the wall
shown in Fig. 2.  Furthermore, the peak shifts to larger av/H. The shift in the position of the peak is related to
the distribution of free-field shear strain over H. 

We recognize that the results in Figure 3 use a time-averaged shear wave velocity,  VS,av that provides only an
approximation of the modal response of the soil column. Errors associated with this approximation transfer to
the normalizing factors av and ky

i
av. The approximation is utilized herein for simplicity since VS,av, av, and ky

i
av

can easily be computed. 

Also  plotted  in  Fig.  3  is  the  normalized  depth  of  the  resultant,  h/H.  As  n increases,  the  h/H decreases  at
wavelengths  longer than the right-most peak. The resultant position at low  av/H values varies rapidly with
changes in  av/H due  to  the  fluctuations  of  seismic  pressure  over  the  wall  height,  and  the resultant  is  not
constrained to act in the interval from 0 to  H.  For example, at certain frequencies  PE = 0, but the resulting
pressure distribution produces a non-zero moment, ME, about the base of the wall. Since h = ME/PE, h becomes
infinite. The notion of a resultant height is not physically meaningful in these cases.
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Fig. 3 – Normalized seismic earth pressure resultant and height of resultant versus normalized wavelength for
vertically heterogeneous soil profiles acting on a rigid wall.

5. Comparison With Exact Analytical Solution

The proposed solutions are approximate in several respects. First, they utilize the Winkler assumption, which is
an approximation that is commonly applied in cases where complicated boundary conditions render rigorous
analytical solutions infeasible. Second, the Winkler stiffness intensity,  ky

i,  was assumed to be proportional to
shear modulus, and the solution by [16] was adapted to this assumption. 

To validate the results obtained using the proposed simplified framework, we compare our findings to exact
analytical solutions developed by [18] for the seismic earth pressures imposed on rigid walls resting on a rigid
base retaining vertically heterogeneous soil. The analytical solution is formulated for a symmetric condition in
which soil is retained between two walls of height H separated by distance L. The largest ratio they studied was
L/H = 10, which is adopted for comparison herein because it corresponds most closely to a single wall condition.
The vertical variation of shear modulus is defined by Eq. (11), where  Go is the shear modulus at the ground
surface,  G∞ is the shear modulus at a depth of infinity, and   is a constant that controls the rate of change of
shear modulus with depth. Mass density  was assumed as depth-invariant in their solution. 
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The shear modulus corresponding to Eq. (1) and Eq. (11) are different, and we seek to fit Eq. (1) to best fit Eq.
(11). To achieve this goal, a dimensionless shear wave velocity profile was computed by taking the square root
of Eq. (11), and normalizing by the value of the resulting expression at z = H. Normalized velocity profiles are
shown in Fig. 4 for various values of  = 1 – Go/G∞.  The constants in Eq. (1) were then fit to these normalized
velocity profiles by dividing Eq. (1) by VH, setting Vo/VH to be equal to the values at z=0 implied by Eq. 11, and
solving for n such that the time-averaged normalized shear wave velocity profiles were equal. 

Fig. 4 – (a) Normalized shear wave velocity profiles, and normalized seismic earth pressures versus normalized
depth for the analytical solution by [18] compared with the proposed solution. Solutions are for (b) H/Vo = 2.4,
(c) H/Vo = 1.5,  = 0.3, and  = 0.05.

Normalized seismic earth pressures presented by [18] are compared with those implied by the solution for free-
field displacements by [15] multiplied by the Winkler stiffness intensity in Eq. (7). These solutions are presented
for two different dimensionless frequencies of (b) H/Vo = 2.4 and (c) H/Vo =1.5. For (b), the proposed solution
modestly under-predicts seismic pressures for  = 0.9 and 0.8, and more significantly under-predicts for  = 0.7.
For (c) the proposed solution slightly under-predicts seismic pressures. A number of factors may be at work in
explaining the under-prediction. First, the solutions for (b) are all fairly close to first-mode resonance (/o =
0.68, 0.9, and 1.06 for   = 0.9, 0.8, and 0.7, respectively). The stiffness modifier term in Eq. (7) [i.e., (aoc

2 –
ao

2)0.5] is a significant contributor to the values of ky
i when the frequency is near a resonant mode, but there is

considerable  uncertainty  in  applying  a  stiffness  modifier  term  formulated  for  homogeneous  soil  to  a
heterogeneous profile. The amplitude of the error is expected to increase as /o becomes closer to unity. The
agreement is much better at lower frequencies where the stiffness modifier is less important. Another possible
cause of the difference is that the first-mode frequencies of the two soil profiles are likely slightly different due
to the misfit in the VS/VH profiles in Fig. 4. Solutions for yy are very sensitive to small changes in frequency
when  /o  is  near  unity,  hence  a  small  difference  in  o could  translate  to  a  significant  difference  in  yy.
Furthermore, the solution by [18] corresponds to a two-dimensional problem with soil contained between two
walls,  while the natural frequency for the proposed solution corresponds to 1-D free-field response. Despite
these differences, the proposed method provides a reasonable agreement with the [18] analytical solutions.

The proposed solutions result in zero seismic earth pressure at the base of the wall because there is zero relative
displacement at this position, as required in a Winkler-type solution by the rigid base assumption . However, the
analytical solutions do predict some seismic pressure at this depth. This illustrates a fundamental limitation of
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the Winkler solution that causes an under-prediction of seismic earth pressure, and an over-prediction of the
height of the resultant force. 

Although not shown in this paper, the proposed method is adaptable to walls resting on deep soil profiles, which
is a more common boundary condition than the rigid base condition. Seismic earth pressures reduce significantly
for  such  flexible-based  conditions  as  compared  to  rigid  base  conditions  because  the  wall  is  better  able  to
conform to the free-field displacement profile,  and the wavelengths controlling seismic excitation tend to be
longer. 

6. Conclusions

Vertical heterogeneity in which the free-field shear wave velocity profile increases with depth causes decreases
in kinematic earth pressures on rigid walls during seismic shaking, relative to the uniform soil condition, for a
constant ground surface motion amplitude. The cause of the reduction is that free-field displacements become
concentrated  near the  ground surface  as  the  degree  of  heterogeneity  increases,  where  the  Winkler  stiffness
intensity is small. More than an order of magnitude reduction in the peak response is predicted as n transitions
from 0 (uniform VS profile) to 1 (linear VS profile). Furthermore, the height of the resultant of the seismic earth
pressure distribution shifts downward as a result of vertical heterogeneity from h/H larger than 0.6 for uniform
soil to slightly more than 0.4 for linearly increasing VS.

The proposed Winkler solution combined with the [15] free-field displacement solution agreed reasonably well
with the exact analytical solution developed by [18]. The former under-predicted the earth pressures computed
by the latter, with the likely cause of the difference being the selection of dynamic Winkler stiffness intensity.
The [18] solutions used for comparison herein were fairly close to the resonant frequency of the free-field soil
column,  and frequency modifiers  to  the  stiffness  terms  are  known to  be  important  near  resonance.  Future
research  regarding  appropriate  selection  of  Winkler  stiffness  intensity  has  the  potential  to  improve  the
agreement.

Wall flexibility, base stiffness, soil inelasticity, gapping, and interface slip are all known contributors to seismic
earth pressures. The influence of these effects is  beyond the scope of this  study,  and is  reserved for future
publications.
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