eScholarship

Combinatorial Theory

Title
A horizontal-strip LLT polynomial is determined by its weighted graph

Permalink
https://escholarship.org/uc/item/2sn420w1

Journal
Combinatorial Theory, 3(3)

ISSN
2766-1334

Author
Tom, Foster

Publication Date
2023

DOI
10.5070/C63362793

Supplemental Material
https://escholarship.org/uc/item/2sn420w1\#supplemental

Copyright Information
Copyright 2023 by the author(s). This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

A HORIZONTAL-STRIP LLT POLYNOMIAL IS DETERMINED BY ITS WEIGHTED GRAPH

Foster Tom* ${ }^{* 1}$
${ }^{1}$ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, U.S.A. ftom@mit.edu

Submitted: Nov 8, 2021; Accepted: Sep 23, 2023; Published: Dec 22, 2023
(C) The author. Released under the CC BY license (International 4.0).

Abstract

We prove that two horizontal-strip LLT polynomials are equal if the associated weighted graphs defined by the author in a previous paper are isomorphic. This provides a sufficient condition for equality of horizontal-strip LLT polynomials and yields a welldefined LLT polynomial indexed by a weighted graph. We use this to prove some new relations between LLT polynomials and we explore a connection with extended chromatic symmetric functions.

Keywords. Chromatic symmetric function, LLT polynomial, Hall-Littlewood polynomial, interval graph, Schur function, weighted graph
Mathematics Subject Classifications. 05E05, 05E10, 05C15

1. Introduction

LLT polynomials have been studied extensively in algebraic combinatorics and representation theory. Horizontal-strip LLT polynomials generalize the Hall-Littlewood polynomials, which are the Frobenius series of cohomology rings of certain subsets of the flag variety [Hai02]. The Shuffle Theorem [CM18] of Carlsson and Mellit describes an LLT expansion of the Frobenius series of the space of diagonal harmonics. The Extended Delta Theorem of Blasiak, Haiman, Morse, Pun, and Seelinger $\left[\mathrm{BHM}^{+} 23\right]$ generalizes this to an LLT expansion of an infinite series of GL_{m} characters using an action of the Schiffmann algebra on the space of symmetric functions. LLT polynomials appear positively in an expansion of Macdonald polynomials [HHL05], which implies that Macdonald polynomials are Schur-positive. LLT polynomials also arise in the representation theory of the quantum affine algebra [LLT97] and of regular semisimple Hessenberg varieties via their connection to chromatic quasisymmetric functions [GP16, SW12].

If $\boldsymbol{\lambda}$ is a sequence of single cells, then the unicellular LLT polynomial $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ can be expressed as a sum over arbitrary colourings of a unit interval graph $\Gamma(\boldsymbol{\lambda})$ associated to $\boldsymbol{\lambda}$. Huh,

[^0]Nam, and Yoo [HNY20] proved a combinatorial Schur expansion of $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ whenever $\Gamma(\boldsymbol{\lambda})$ is a "melting lollipop" and Alexandersson conjectured [Ale21] and then proved with Sulzgruber [AS22] a combinatorial elementary symmetric function expansion of $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q+1)$ in terms of acyclic orientations of $\Gamma(\boldsymbol{\lambda})$. An equality of unicellular LLT polynomials $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\mu}(\boldsymbol{x} ; q)$ is equivalent [CM18] to an equality of the corresponding chromatic quasisymmetric functions $X_{\Gamma(\boldsymbol{\lambda})}(\boldsymbol{x} ; q)=X_{\Gamma(\boldsymbol{\mu})}(\boldsymbol{x} ; q)$ introduced by Shareshian and Wachs [SW 16]. Therefore, LLT polynomials are intimately connected to longstanding conjectures about equalities of chromatic symmetric functions, which is an area of active research [APZ14, APCSZ21, Cre22].

If $\boldsymbol{\lambda}$ is a sequence of rows, then the horizontal-strip LLT polynomial $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ can be expressed as a sum over certain colourings of a unit interval graph $\tilde{\Gamma}(\boldsymbol{\lambda})$ with some decorated edges and Alexandersson and Sulzgruber's result [AS22] generalizes to this setting. In [Tom21] the author defined an alternative generalization of $\Gamma(\boldsymbol{\lambda})$ to a weighted interval graph $\Pi(\boldsymbol{\lambda})$. That paper gives a combinatorial Schur expansion of $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ whenever $\Pi(\boldsymbol{\lambda})$ is triangle-free and shows that the largest power of q in $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ is the total edge weight of $\Pi(\boldsymbol{\lambda})$.

The main result of this paper, Theorem 2.7, states that the horizontal-strip LLT polynomial $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ is determined by the weighted graph $\Pi(\boldsymbol{\lambda})$. In other words, if $\Pi(\boldsymbol{\lambda}) \cong \Pi(\boldsymbol{\mu})$, then $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\mu}(\boldsymbol{x} ; q)$. In particular, this implies that if Π is a weighted graph arising from this construction, then there corresponds a well-defined LLT polynomial $G_{\Pi}(\boldsymbol{x} ; q)$. In Section 3, we prove Theorem 2.7 modulo a technical result, Lemma 3.23, whose proof we postpone to Section 5. In Section 4, we explore a connection between $G_{\Pi}(\boldsymbol{x} ; q)$ and the extended chromatic symmetric functions $X_{\Pi}(\boldsymbol{x})$ associated to weighted graphs that were defined by Crew and Spirkl [CS20] and whose relations were considered in [AWvW21].

2. Background

A composition α is a finite sequence of positive integers $\alpha=\alpha_{1} \cdots \alpha_{\ell}$. We denote by $\ell(\alpha)$ the length of α and by convention, we set $\alpha_{i}=0$ if $i>\ell$. A partition σ is a composition that is weakly decreasing, that is $\sigma_{1} \geqslant \cdots \geqslant \sigma_{\ell}$. We also define the integer $n(\sigma)=\sum_{i}(i-1) \sigma_{i}$. If σ and τ are partitions with $\sigma_{i} \geqslant \tau_{i}$ for every i, then the corresponding skew diagram is

$$
\begin{equation*}
\lambda=\sigma / \tau=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}: i \geqslant 1, \tau_{i}+1 \leqslant j \leqslant \sigma_{i}\right\} \tag{2.1}
\end{equation*}
$$

If τ is the empty partition, we write σ instead of σ / \varnothing. The elements of λ are called cells and the content of a cell $u=(i, j) \in \lambda$ is the integer $c(u)=j-i$. We primarily work with rows and we assume the contents are nonnegative, so that they are skew diagrams of the form

$$
\begin{equation*}
R=a / b=\{(1, j) \in \mathbb{N} \times \mathbb{N}: b+1 \leqslant j \leqslant a\} \tag{2.2}
\end{equation*}
$$

for some $a \geqslant b \geqslant 0$. We denote by $l(R)=b$ and $r(R)=a-1$ the smallest and largest contents of cells of R. Note that $l(R)$ is the content of the leftmost cell of R, not the length of R, which is $|R|=r(R)-l(R)+1$. We also denote by $R^{+}=(a+1) /(b+1)$ and $R^{-}=(a-1) /(b-1)$ the rows obtained by shifting R right or left respectively by one cell. A semistandard Young tableau (SSYT) of shape λ is a function $T: \lambda \rightarrow\{1,2,3, \ldots\}$ that satisfies $T_{i, j} \leqslant T_{i, j+1}$ and $T_{i, j}<T_{i+1, j}$, where we write $T_{i, j}$ instead of $T((i, j))$. A multiskew partition is a sequence
of skew diagrams $\boldsymbol{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(n)}\right)$. We say that $\boldsymbol{\lambda}$ is unicellular if each $\lambda^{(i)}$ is a single cell and in keeping with the terminology of Alexandersson and Sulzgruber [AS22], we say that $\boldsymbol{\lambda}$ is a horizontal-strip if each $\lambda^{(i)}$ is a row. If $\boldsymbol{\lambda}$ is a horizontal-strip, we denote by λ the partition determined by the row lengths of $\boldsymbol{\lambda}$ and we define $n(\boldsymbol{\lambda})=n(\lambda)$. We denote by

$$
\begin{equation*}
\operatorname{SSYT}_{\boldsymbol{\lambda}}=\left\{\boldsymbol{T}=\left(T^{(1)}, \ldots, T^{(n)}\right): T^{(i)} \in \operatorname{SSYT}_{\boldsymbol{\lambda}^{(i)}}\right\} \tag{2.3}
\end{equation*}
$$

the set of sequences of SSYTs of shape $\boldsymbol{\lambda}$. Two entries $T^{(i)}(u)$ and $T^{(j)}(v)$ of \boldsymbol{T} with $i<j$ form an inversion if either

- $c(u)=c(v)$ and $T^{(i)}(u)>T^{(j)}(v)$, or
- $c(u)=c(v)+1$ and $T^{(i)}(u)<T^{(j)}(v)$.

We denote by $\operatorname{inv}(\boldsymbol{T})$ the number of inversions of \boldsymbol{T} and we define $\boldsymbol{x}^{\boldsymbol{T}}=x_{1}^{\# \text { of 1's }} x_{2}^{\# \text { of } 2 \text { 's }} \cdots$. Now we define the LLT polynomial

$$
\begin{equation*}
G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=\sum_{\boldsymbol{T} \in \mathrm{SSYT}_{\boldsymbol{\lambda}}} q^{\operatorname{inv}(\boldsymbol{T})} \boldsymbol{x}^{\boldsymbol{T}} . \tag{2.4}
\end{equation*}
$$

Example 2.1. The multiskew partition $\boldsymbol{\lambda}=(4 / 0,5 / 4,8 / 5,6 / 1)$, two SSYTs \boldsymbol{S} and \boldsymbol{T} of shape $\boldsymbol{\lambda}$ with their inversions marked by dashed lines, and the corresponding monomials of the LLT polynomial $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ are given below. Because $\boldsymbol{\lambda}$ is a horizontal-strip, we draw it so that cells of the same content are aligned vertically.

The LLT polynomial $G_{(4 / 0,5 / 4,8 / 5,6 / 1)}(\boldsymbol{x} ; q)$ can be expanded in the Schur function basis as

$$
\begin{aligned}
G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q) & =q^{6} s_{5431}+q^{6} s_{544}+q^{6} s_{5521}+2 q^{6} s_{553}+q^{6} s_{6331}+2 q^{6} s_{6421}+\left(3 q^{6}+q^{5}\right) s_{643} \\
& +2 q^{6} s_{6511}+\left(4 q^{6}+q^{5}\right) s_{652}+\left(2 q^{6}+q^{5}\right) s_{661}+\left(q^{6}+q^{5}\right) s_{7321}+\left(q^{6}+2 q^{5}\right) s_{733} \\
& +\left(q^{6}+2 q^{5}\right) s_{7411}+\left(2 q^{6}+5 q^{5}\right) s_{742}+\left(2 q^{6}+6 q^{5}\right) s_{751}+4 q^{5} s_{76}+q^{5} s_{8221} \\
& +\left(2 q^{5}+q^{4}\right) s_{8311}+\left(4 q^{5}+2 q^{4}\right) s_{832}+\left(5 q^{5}+5 q^{4}\right) s_{841}+\left(3 q^{5}+4 q^{4}\right) s_{85}+2 q^{4} s_{9211} \\
& +3 q^{4} s_{922}+\left(7 q^{4}+2 q^{3}\right) s_{931}+\left(5 q^{4}+3 q^{3}\right) s_{94}+q^{3} s_{(10) 111}+6 q^{3} s_{(10) 21} \\
& +\left(6 q^{3}+q^{2}\right) s_{(10) 3}+3 q^{2} s_{(11) 11}+5 q^{2} s_{(11) 2}+3 q s_{(12) 1}+s_{(13)} .
\end{aligned}
$$

LLT polynomials are symmetric functions [LLT97, Theorem 6.1] and moreover are Schurpositive, [HHLU05, Theorem 3.1.3] [LT00] [GH07, Corollary 6.9], meaning that they can be expressed as a linear combination of Schur functions where the coefficients are polynomials in q with positive coefficients. Finding a combinatorial formula for this Schur expansion is a major open problem of active research [Ale21, AP18, AS22, AU20, HNY20, Tom21].

When $\boldsymbol{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(n)}\right)$ is unicellular, we can associate to $\boldsymbol{\lambda}$ a labelled graph $\Gamma(\boldsymbol{\lambda})$ with vertices v_{1}, \ldots, v_{n} as follows. We label the cells of $\boldsymbol{\lambda}$ as $1,2,3, \ldots$ in reverse content reading order, meaning in order of decreasing content and from top to bottom along constant content lines. Then vertices v_{i} and v_{j} are joined by an edge if it is possible for entries in cells i and j to form an inversion. This approach was effective in finding combinatorial formulas for unicellular LLT polynomials [Ale21, AP18, HNY20]. Graphs arising from this construction are called unit interval graphs and they have several equivalent characterizations [Gar07].

Example 2.2. The unicellular multiskew partitions $\boldsymbol{\lambda}=(2 / 1,1 / 0,1 / 0,2 / 1,2 / 1)$ and $\boldsymbol{\mu}=(1 / 0,2 / 1,2 / 1,1 / 0,2 / 1)$ are given below with their cells labelled in reverse content reading order, along with the associated labelled graphs $\Gamma(\boldsymbol{\lambda})$ and $\Gamma(\boldsymbol{\mu})$.

When $\boldsymbol{\lambda}$ is unicellular, a tableau $\boldsymbol{T} \in \mathrm{SSYT}_{\boldsymbol{\lambda}}$ is precisely a (possibly not proper) colouring $\kappa: \Gamma(\boldsymbol{\lambda}) \rightarrow \mathbb{N}$ and an inversion of \boldsymbol{T} is an ascent of κ, namely an edge $\left(v_{i}, v_{j}\right) \in E(\Gamma(\boldsymbol{\lambda}))$ with $i<j$ and $\kappa\left(v_{i}\right)<\kappa\left(v_{j}\right)$. Therefore, we can express $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ in terms of $\Gamma(\boldsymbol{\lambda})$ as

$$
\begin{equation*}
G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=\sum_{\substack{\kappa: \Gamma(\boldsymbol{\lambda}) \rightarrow \mathbb{N} \\ \kappa \text { arbitrary }}} q^{\operatorname{asc}(\kappa)} \boldsymbol{x}^{\kappa} . \tag{2.5}
\end{equation*}
$$

If we restrict the sum (2.5) to proper colourings, meaning that $\kappa\left(v_{i}\right) \neq \kappa\left(v_{j}\right)$ whenever $\left(v_{i}, v_{j}\right) \in E(\Gamma(\boldsymbol{\lambda}))$, then we have the chromatic quasisymmetric function $X_{\Gamma(\boldsymbol{\lambda})}(\boldsymbol{x} ; q)$. Unicellular LLT polynomials and chromatic quasisymmetric functions are related by a change of variables, namely the plethystic relationship [CM18, Proposition 3.4]

$$
\begin{equation*}
X_{\Gamma(\boldsymbol{\lambda})}(\boldsymbol{x} ; q)=(q-1)^{-|\Gamma(\boldsymbol{\lambda})|} G_{\boldsymbol{\lambda}}[\boldsymbol{x}(q-1) ; q], \tag{2.6}
\end{equation*}
$$

which in particular implies that if $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ are unicellular, then

$$
\begin{equation*}
X_{\Gamma(\boldsymbol{\lambda})}(\boldsymbol{x} ; q)=X_{\Gamma(\boldsymbol{\mu})}(\boldsymbol{x} ; q) \text { if and only if } G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}}(\boldsymbol{x} ; q) . \tag{2.7}
\end{equation*}
$$

For example, the unicellular multiskew partitions $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ from Example 2.2 have the same LLT polynomials and their labelled unit interval graphs have the same chromatic quasisymmetric
functions. Because of this relationship, unicellular LLT polynomials may be a fruitful approach to the Stanley-Stembridge conjecture that chromatic symmetric functions of unit interval graphs are e-positive, or its refinement, the Shareshian-Wachs conjecture, which asks for a combinatorial elementary function expansion of the chromatic quasisymmetric function.

When $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ is a horizontal-strip, one generalization of the above construction is to include a set S of special edges that record when cells of $\boldsymbol{\lambda}$ are in the same row. Then we can express the LLT polynomial in terms of this decorated graph $\tilde{\Gamma}(\boldsymbol{\lambda})$ as

$$
\begin{equation*}
G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=\sum_{\substack{\kappa: \tilde{\Gamma}(\boldsymbol{\lambda}) \rightarrow \mathbb{N} \\ \kappa\left(v_{i}\right) \leqslant \kappa\left(v_{j}\right) \text { if } i<j,\left(v_{i}, v_{j}\right) \in S}} q^{\operatorname{asc}(\kappa)} \boldsymbol{x}^{\kappa} . \tag{2.8}
\end{equation*}
$$

This approach was successfully employed by Alexandersson and Sulzgruber [AS22].
Example 2.3. The horizontal-strip $\boldsymbol{\lambda}=(4 / 0,5 / 4,8 / 5,6 / 1)$ and its associated decorated labelled graph $\tilde{\Gamma}(\boldsymbol{\lambda})$ are given below.

11	9	7	5	3

 \(\tilde{\Gamma}(\boldsymbol{\lambda})\)

We will be interested in the following weighted $\operatorname{graph} \Pi(\boldsymbol{\lambda})$ that the author defined as an alternative generalization of $\Gamma(\boldsymbol{\lambda})$ to the horizontal-strip case.

Definition 2.4. [Tom21, Definition 3.1, Definition 3.2] Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontalstrip. For $1 \leqslant i<j \leqslant n$ we define the integers

$$
M\left(R_{i}, R_{j}\right)= \begin{cases}\left|R_{i} \cap R_{j}\right| & \text { if } l\left(R_{i}\right) \leqslant l\left(R_{j}\right), \tag{2.9}\\ \left|R_{i} \cap R_{j}^{+}\right| & \text {if } l\left(R_{i}\right)>l\left(R_{j}\right) .\end{cases}
$$

We then define a weighted graph $\Pi(\boldsymbol{\lambda})$ whose vertices are the rows of $\boldsymbol{\lambda}$. The weight of a row R_{i} is the number of cells $\left|R_{i}\right|$ and rows R_{i} and R_{j} with $i<j$ are joined by an edge of weight $M\left(R_{i}, R_{j}\right)$. By convention, we omit edges of weight zero.

Remark 2.5. In [Tom21, Definition 3.2] the author also defined an ordering of the vertices of $\Pi(\boldsymbol{\lambda})$ based on the content reading order of the rightmost cells in the rows of $\boldsymbol{\lambda}$. However, because our main Theorem states that the corresponding LLT polynomial does not depend on this labelling, we will not be interested in it. Also note that if $\boldsymbol{\lambda}$ is unicellular, then the graph $\Pi(\boldsymbol{\lambda})$ is simply $\Gamma(\boldsymbol{\lambda})$ with all vertex and edge weights one.

Example 2.6. The horizontal-strip $\boldsymbol{\lambda}=(4 / 0,5 / 4,8 / 5,6 / 1)$ and the weighted graph $\Pi(\boldsymbol{\lambda})$ are given below. We have $M\left(R_{1}, R_{4}\right)=3, M\left(R_{2}, R_{4}\right)=1$, and $M\left(R_{3}, R_{4}\right)=2$. We have also
drawn the horizontal-strip $\boldsymbol{\mu}=(5 / 4,9 / 5,7 / 2,3 / 0)$, whose weighted graph $\Pi(\boldsymbol{\mu})$ is isomorphic to $\Pi(\boldsymbol{\lambda})$.

We can now state our main Theorem. We will state the key Lemma 3.23 in Section 3 and we will show how it implies Theorem 2.7. We will then prove Lemma 3.23 in Section 5.

Theorem 2.7. Let $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ be horizontal-strips. If the weighted graphs $\Pi(\boldsymbol{\lambda})$ and $\Pi(\boldsymbol{\mu})$ are isomorphic, then the LLT polynomials $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ and $G_{\mu}(\boldsymbol{x} ; q)$ are equal. In other words,

$$
\begin{equation*}
\text { if } \Pi(\boldsymbol{\lambda}) \cong \Pi(\boldsymbol{\mu}) \text {, then } G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\mu}(\boldsymbol{x} ; q) \text {. } \tag{2.10}
\end{equation*}
$$

Example 2.8. The horizontal-strips $\boldsymbol{\lambda}=(4 / 0,5 / 4,8 / 5,6 / 1)$ and $\boldsymbol{\mu}=(5 / 4,9 / 5,7 / 2,3 / 0)$ in Example 2.6 have isomorphic weighted graphs, so it follows from Theorem 2.7 that $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}}(\boldsymbol{x} ; q)$.

We define a weighted graph Π to be admissible if it arises from our construction, in other words if $\Pi \cong \Pi(\boldsymbol{\lambda})$ for some horizontal-strip $\boldsymbol{\lambda}$. Then an alternative restatement of Theorem 2.7 is that if Π is admissible, then there is a well-defined LLT polynomial $G_{\Pi}(\boldsymbol{x} ; q)$ given by $G_{\Pi}(\boldsymbol{x} ; q)=G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$, where $\boldsymbol{\lambda}$ is any horizontal-strip with $\Pi \cong \Pi(\boldsymbol{\lambda})$.

Theorem 2.7 justifies our choice to associate to $\boldsymbol{\lambda}$ this mysterious weighted graph $\Pi(\boldsymbol{\lambda})$. We now mention some advantages of this definition.

1. [Tom21, Theorem 4.6] If $\Pi(\boldsymbol{\lambda})$ is triangle-free, then there is a combinatorial Schur expansion of $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ defined purely in terms of $\Pi(\boldsymbol{\lambda})$, but not $\boldsymbol{\lambda}$ itself.
2. [Tom21, Example 4.10] As an example of (1), if we let $P_{a b}(M)$ denote a graph consisting of two vertices of weights a and b, joined by an edge of weight M, where we may assume that $a \geqslant b \geqslant M$ without loss of generality, then the Schur function expansion of the LLT polynomial $G_{P_{a b}(M)}(\boldsymbol{x} ; q)$ can be expressed in terms of a, b, and M as

$$
\begin{equation*}
G_{P_{a b}(M)}=\sum_{k=0}^{b} q^{\min \{M, k\}} s_{(a+b-k) k}=s_{(a+b)}+q s_{(a+b-1) 1}+\cdots+q^{M} s_{(a+b-M) M}+\cdots+q^{M} s_{a b} . \tag{2.11}
\end{equation*}
$$

3. [Tom21, Lemma 3.15] If $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ are horizontal-strips that differ by switching a pair of adjacent rows, then we have

$$
\begin{equation*}
G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}}(\boldsymbol{x} ; q) \text { if and only if } \Pi(\boldsymbol{\lambda}) \cong \Pi(\boldsymbol{\mu}) . \tag{2.12}
\end{equation*}
$$

In other words, equalities of LLT polynomials in this case are characterized by the associated weighted graphs.
4. The graph $\tilde{\Gamma}(\boldsymbol{\lambda})$ contains essentially the same information as the horizontal-strip $\boldsymbol{\lambda}$, while the coarser invariant $\Pi(\boldsymbol{\lambda})$ is more useful for detecting equalities of LLT polynomials. For example, consider $\boldsymbol{\lambda}=(2 / 1,2 / 0)$ and $\boldsymbol{\mu}=(2 / 0,2 / 1)$ below.

Note that $\tilde{\Gamma}(\boldsymbol{\lambda})$ has two normal edges and one special edge, while $\tilde{\Gamma}(\boldsymbol{\mu})$ has one normal edge and one special edge. Meanwhile, we have $\Pi(\boldsymbol{\lambda}) \cong \Pi(\boldsymbol{\mu}) \cong P_{21}(1)$, so by (2.11) we have $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}}(\boldsymbol{x} ; q)=s_{3}+q s_{21}$.

We saw in Example 2.2 that even in the unicellular case, the converse to Theorem 2.7 does not hold because there are horizontal-strips $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ with $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}}(\boldsymbol{x} ; q)$ but $\Pi(\boldsymbol{\lambda}) \not \equiv \Pi(\boldsymbol{\mu})$. However, we hope that such cases underlie a deep connection to equalities of chromatic symmetric functions, which are an area of active research [AWvW21, APZ14, APCSZ21, Cre22]. We explore this connection in Theorem 4.12 and Theorem 4.18 in Section 4.

3. Proof of Theorem 2.7

In this section we prove Theorem 2.7, modulo a technical result, Lemma 3.23, whose proof we postpone to Section 5 . The general idea is to rewrite $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ in a more convenient form while preserving their weighted graphs and LLT polynomials. The following definition will be convenient to describe the relationship between rows within a fixed horizontal-strip.

Definition 3.1. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip and $1 \leqslant i, j \leqslant n$ with $i \neq j$. We define $M_{i, j}(\boldsymbol{\lambda})$ to be the number of edges in $\Pi(\boldsymbol{\lambda})$ joining R_{i} and R_{j}, that is

$$
M_{i, j}(\boldsymbol{\lambda})= \begin{cases}M\left(R_{i}, R_{j}\right) & \text { if } i<j, \tag{3.1}\\ M\left(R_{j}, R_{i}\right) & \text { if } i>j .\end{cases}
$$

We abbreviate $M_{i, j}(\boldsymbol{\lambda})$ as $M_{i, j}$ if the context is clear. Note that

$$
\begin{equation*}
0 \leqslant M_{i, j} \leqslant \min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\} . \tag{3.2}
\end{equation*}
$$

We also take this opportunity to formally define an isomorphism of weighted graphs.
Definition 3.2. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ and $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ be horizontal-strips. An isomorphism of weighted graphs, denoted $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$, is a permutation

$$
\begin{equation*}
\varphi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \tag{3.3}
\end{equation*}
$$

that satisfies $\left|R_{i}\right|=\left|S_{\varphi_{i}}\right|$ and $M_{i, j}(\boldsymbol{\lambda})=M_{\varphi_{i}, \varphi_{j}}(\boldsymbol{\mu})$ for all i and j. The weighted graphs $\Pi(\boldsymbol{\lambda})$ and $\Pi(\boldsymbol{\mu})$ are isomorphic, denoted $\Pi(\boldsymbol{\lambda}) \cong \Pi(\boldsymbol{\mu})$, if there exists such an isomorphism. We say that $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ are similar if $\Pi(\boldsymbol{\lambda}) \cong \Pi(\boldsymbol{\mu})$ and $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}}(\boldsymbol{x} ; q)$ and we denote by $\mathcal{S}(\boldsymbol{\lambda})$ the set of horizontal-strips that are similar to $\boldsymbol{\lambda}$.

Remark 3.3. Theorem 2.7 states that $\Pi(\boldsymbol{\lambda}) \cong \Pi(\boldsymbol{\mu})$ implies that $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}}(\boldsymbol{x} ; q)$, but until we have proven this it will be convenient to temporarily define this concept of similarity.

Example 3.4. In Example 2.6, we have that $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$, where φ is the permutation given by $\varphi_{1}=2, \varphi_{2}=1, \varphi_{3}=4$, and $\varphi_{4}=3$.

Note that similarity is an equivalence relation. We now describe some operations we can perform on a horizontal-strip while preserving similarity.

Proposition 3.5. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip.

1. Let $\boldsymbol{\lambda}^{+}=\left(R_{1}^{+}, \ldots, R_{n}^{+}\right)$and $\boldsymbol{\lambda}^{-}=\left(R_{1}^{-}, \ldots, R_{n}^{-}\right)$be the horizontal-strips obtained by translating all rows right by one cell or left by one cell respectively. Then we have $\boldsymbol{\lambda}^{+}, \boldsymbol{\lambda}^{-} \in \mathcal{S}(\boldsymbol{\lambda})$.
2. Define the cycle of $\boldsymbol{\lambda}$ to be $\kappa(\boldsymbol{\lambda})=\left(R_{2}, \ldots, R_{n}, R_{1}^{-}\right)$. Then we have $\kappa(\boldsymbol{\lambda}) \in \mathcal{S}(\boldsymbol{\lambda})$.
3. For a sufficiently large integer N, define the rotation of $\boldsymbol{\lambda}$ to be $N-\boldsymbol{\lambda}=\left(N-R_{n}, \ldots, N-R_{1}\right)$, where $N-R=\{(1, N-j): j \in R\}$. Then we have $N-\boldsymbol{\lambda} \in \mathcal{S}(\boldsymbol{\lambda})$.

Remark 3.6. In (3), we take N to be sufficiently large simply because we assume that our cells have nonnegative content. Because of (1), the precise value of N will not matter to us.

Proof of Proposition 3.5.

1. This follows directly from the definition because $\Pi(\boldsymbol{\lambda})$ and $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ only depend on the relative positions of the rows of $\boldsymbol{\lambda}$.
2. This follows directly from the definition because $M\left(R_{i}, R_{j}\right)=M\left(R_{j}, R_{i}^{-}\right)$and because the condition for a cell $u \in R_{i}$ for $i \geqslant 2$ to make an inversion with a cell $v=\left(1, j^{\prime}\right) \in R_{1}$ in $\boldsymbol{\lambda}$ is exactly the condition for u to make an inversion with the cell $v^{-}=\left(1, j^{\prime}-1\right) \in R_{1}^{-}$ in $\kappa(\boldsymbol{\lambda})$.
3. It follows directly from the definition that $M\left(N-R_{i}, N-R_{j}\right)=M\left(R_{j}, R_{i}\right)$ and therefore $\Pi(N-\boldsymbol{\lambda}) \cong \Pi(\boldsymbol{\lambda})$. If we restrict to a finite set of variables $\left(x_{1}, \ldots, x_{k}\right)$, then by associating a tableau $\boldsymbol{T}=\left(T^{(1)}, \ldots, T^{(n)}\right) \in \mathrm{SSYT}_{\boldsymbol{\lambda}}$ to a tableau $-\boldsymbol{T}=\left(-T^{(1)}, \ldots,-T^{(n)}\right) \in \mathrm{SSYT}_{N-\lambda}$ by setting $-T_{1, j}^{(i)}=k+1-T_{1, N-j}^{(n+1-i)}$, we have

$$
\begin{equation*}
G_{N-\lambda}\left(x_{1}, \ldots, x_{k} ; q\right)=G_{\boldsymbol{\lambda}}\left(x_{k}, \ldots, x_{1} ; q\right) \tag{3.4}
\end{equation*}
$$

and because LLT polynomials are symmetric, it follows that $G_{N-\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$.
Example 3.7. Let $\boldsymbol{\lambda}=(4 / 0,5 / 4,8 / 5,6 / 1)$ as in Example 2.6. The cycle $\kappa(\boldsymbol{\lambda})$ has a negative content, so for convenience we will translate right. Then the cycle $\kappa\left(\boldsymbol{\lambda}^{+}\right)=(6 / 5,9 / 6,7 / 2,4 / 0)$ and the rotation $7-\boldsymbol{\lambda}=(7 / 2,3 / 0,4 / 3,7 / 4)$ are drawn below.

Definition 3.8. We say that rows R and R^{\prime} commute, denoted $R \leftrightarrow R^{\prime}$, if we have $M\left(R, R^{\prime}\right)=M\left(R^{\prime}, R\right)$, and otherwise we write $R \nleftarrow R^{\prime}$.

Lemma 3.9. [Tom21, Lemma 3.15] Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip. If $R_{i} \leftrightarrow R_{i+1}$, then $\left(R_{1}, \ldots, R_{i+1}, R_{i}, \ldots, R_{n}\right) \in \mathcal{S}(\boldsymbol{\lambda})$.

We now examine the integers $M_{i, j}(\boldsymbol{\lambda})$ in more detail, particularly their relationship to commutation. The following Proposition is a straightforward calculation.

Proposition 3.10. [Tom21, Proposition 3.8] Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip and let $1 \leqslant i, j \leqslant n$. Without loss of generality, assume that $l\left(R_{i}\right) \leqslant l\left(R_{j}\right)$.

1. If $r\left(R_{i}\right)<l\left(R_{j}\right)-1$, then $M\left(R_{i}, R_{j}\right)=M\left(R_{j}, R_{i}\right)=0$, so $R_{i} \leftrightarrow R_{j}$.
2. If $l\left(R_{i}\right)=l\left(R_{j}\right)$ or $r\left(R_{j}\right) \leqslant r\left(R_{i}\right)$, then $M\left(R_{i}, R_{j}\right)=M\left(R_{j}, R_{i}\right)=\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$, so $R_{i} \leftrightarrow R_{j}$.
3. Otherwise, we have $l\left(R_{i}\right)<l\left(R_{j}\right) \leqslant r\left(R_{i}\right)+1 \leqslant r\left(R_{j}\right)$, and

$$
\begin{equation*}
M\left(R_{i}, R_{j}\right)=r\left(R_{i}\right)-l\left(R_{j}\right)+1 \text { and } M\left(R_{j}, R_{i}\right)=r\left(R_{i}\right)-l\left(R_{j}\right)+2, \text { so } R_{i} \leftrightarrow R_{j} . \tag{3.5}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
M_{i, j}=r\left(R_{i}\right)-l\left(R_{j}\right)+1+\chi(i>j), \tag{3.6}
\end{equation*}
$$

where $\chi(i>j)=1$ if $i>j$ and 0 otherwise.

Example 3.11. The three cases of Proposition 3.10 are illustrated below. The pairs on the left and the middle commute and the pair on the right does not. As a visual description, we have that two rows commute if and only if they are either disjoint and separated by at least one cell, or if one is contained in the other.

Remark 3.12. Informally, once we fix the edge weight $M_{i, j}$ between two rows R_{i} and R_{j}, if $R_{i} \leftrightarrow R_{j}$, then there is some flexibility in their positions because they need only be disjoint (and separated by at least one cell) or one is contained in the other, while if $R_{i} \not \leftrightarrow R_{j}$, then by (3.6) their relative positions are specifically constrained.

Corollary 3.13. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip.

1. If $R_{i} \leftrightarrow R_{j}$, then $M_{i, j}$ is either 0 or $\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$. Equivalently, if $0<M_{i, j}<\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$, then $R_{i} \leftrightarrow R_{j}$.
2. If $R_{i} \leftrightarrow R_{j}$, then we either have $l\left(R_{i}\right)<l\left(R_{j}\right)$ and $r\left(R_{i}\right)<r\left(R_{j}\right)$, or we have $l\left(R_{i}\right)>l\left(R_{j}\right)$ and $r\left(R_{i}\right)>r\left(R_{j}\right)$.
3. Suppose that $i<j$ and $R_{i} \not \leftrightarrow R_{j}$. If $M_{i, j}=0$, then $l\left(R_{j}\right)=r\left(R_{i}\right)+1$, so in particular $l\left(R_{i}\right)<l\left(R_{j}\right)$. If $M_{i, j}=\left|R_{i}\right|$, then $r\left(R_{j}\right)=r\left(R_{i}\right)-1$, while if $M_{i, j}=\left|R_{j}\right|$, then $l\left(R_{j}\right)=l\left(R_{i}\right)-1$, so in particular we have $l\left(R_{j}\right)<l\left(R_{i}\right)$ in both cases.

Proof.

1. Assuming without loss of generality that $l\left(R_{i}\right) \leqslant l\left(R_{j}\right)$, then all of the possibilities are enumerated in Proposition 3.10 and we have $R_{i} \leftrightarrow R_{j}$ only when $M_{i, j}=0$ or $\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$.
2. Assuming without loss of generality that $l\left(R_{i}\right) \leqslant l\left(R_{j}\right)$, then all of the possibilities are enumerated in Proposition 3.10 and we have $R_{i} \leftrightarrow R_{j}$ only when $l\left(R_{i}\right)<l\left(R_{j}\right)$ and $l\left(R_{j}\right) \leqslant r\left(R_{i}\right)+1 \leqslant r\left(R_{j}\right)$, so in particular $r\left(R_{i}\right)<r\left(R_{j}\right)$.
3. By (3.5), if $M_{i, j}=M\left(R_{i}, R_{j}\right)=0$, then if $l\left(R_{j}\right)<l\left(R_{i}\right)$ we would have $M\left(R_{j}, R_{i}\right)=$ $M\left(R_{i}, R_{j}\right)-1=-1$, contradicting (3.2), so we must have $l\left(R_{i}\right)<l\left(R_{j}\right)$ and $M_{i, j}=$ $0=r\left(R_{i}\right)-l\left(R_{j}\right)+1$. Similarly, by (3.5), if $M_{i, j}=M\left(R_{i}, R_{j}\right)=\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$, then if $l\left(R_{i}\right)<l\left(R_{j}\right)$ we would have $M\left(R_{j}, R_{i}\right)=\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}+1$, contradicting (3.2), so we must have $l\left(R_{j}\right)<l\left(R_{i}\right)$ and $M_{i, j}=r\left(R_{j}\right)-l\left(R_{i}\right)+2$. The result now follows by noting that $\left|R_{i}\right|=r\left(R_{i}\right)-l\left(R_{i}\right)+1$ and $\left|R_{j}\right|=r\left(R_{j}\right)-l\left(R_{j}\right)+1$.

Remark 3.14. Note that the converse to (1) does not hold. It is possible to have $M\left(R_{i}, R_{j}\right)=0$ and $R_{i} \leftrightarrow R_{j}$ as below left. However, (3) tells us that if this occurs, the higher row must be to the right. Similarly, it is possible to have $M\left(R_{i}, R_{j}\right)=\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$ and $R_{i} \leftrightarrow R_{j}$ as below
middle or below right. However, (3) tells us that if this occurs, the higher row must be to the left.

We now show how we can use cycling and commuting to prove Theorem 2.7 in a special case. Recall that if $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$, then we have

$$
\begin{equation*}
M(\boldsymbol{\lambda})=\sum_{1 \leqslant i<j \leqslant n} M\left(R_{i}, R_{j}\right) \leqslant \sum_{1 \leqslant i<j \leqslant n} \min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}=n(\boldsymbol{\lambda}) . \tag{3.7}
\end{equation*}
$$

Lemma 3.15. Theorem 2.7 holds if $M(\boldsymbol{\lambda})=n(\boldsymbol{\lambda})$.
Proof. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$. By (3.7), we have that if $M(\boldsymbol{\lambda})=n(\boldsymbol{\lambda})$, then $M\left(R_{i}, R_{j}\right)=$ $\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$ for all $1 \leqslant i<j \leqslant n$. Recall that we denote by λ the partition determined by the row lengths of $\boldsymbol{\lambda}$. We now show that the horizontal-strip $\boldsymbol{H}(\lambda)=\left(\lambda_{1} / 0, \ldots, \lambda_{n} / 0\right)$ is similar to $\boldsymbol{\lambda}$, meaning that the LLT polynomial $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ only depends on λ and therefore only on the weighted graph $\Pi(\boldsymbol{\lambda})$. By translating, we may assume without loss of generality that $\min \left\{l\left(R_{i}\right): 1 \leqslant i \leqslant n\right\}=0$, and suppose that $l\left(R_{a}\right)=0$. Because $M_{i, j}=\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$ for every i, j, we have by Proposition 3.10, Part 2 an upper bound $l\left(R_{j}\right) \leqslant r\left(R_{a}\right)+1=\left|R_{a}\right|$, so let us further assume that $\boldsymbol{\lambda}$ has $\sum_{i=1}^{n} l\left(R_{i}\right)$ minimal among all horizontal-strips similar to $\boldsymbol{\lambda}$.

We now claim that $l\left(R_{i}\right)=0$ for every $1 \leqslant i \leqslant n$. If not, let j be such that $l\left(R_{j}\right) \geqslant 1$ is maximal. By Corollary 3.13, Part 3, if $i<j$ and $R_{i} \nleftarrow R_{j}$, then because $M_{i, j}=\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$, we must have $l\left(R_{j}\right)<l\left(R_{i}\right)$, contradicting maximality of $l\left(R_{j}\right)$, so we must have $R_{i} \leftrightarrow R_{j}$ for every $i<j$. By Proposition 3.5, we can now commute and cycle to find that $\left(R_{1}, \ldots, R_{n}, R_{j}^{-}\right) \in \mathcal{S}(\boldsymbol{\lambda})$, contradicting minimality of $\sum_{i=1}^{n} l\left(R_{i}\right)$. Therefore, we indeed have $l\left(R_{i}\right)=0$ for every $1 \leqslant i \leqslant n$, so by Proposition 3.10, Part 2 , we have $R_{i} \leftrightarrow R_{j}$ for every $1 \leqslant i, j \leqslant n$ and by commuting once again we have $\boldsymbol{H}(\lambda) \in \mathcal{S}(\boldsymbol{\lambda})$. This completes the proof.

Example 3.16. Figure 3.1 illustrates the idea of the proof of Lemma 3.15. The row R_{3}, which has $l\left(R_{3}\right)$ maximal, commutes with all rows below, so by commuting and cycling, we can move it to the left. Continuing in this way, the horizontal-strip $\boldsymbol{\lambda}$ is shown to be similar to $\boldsymbol{H}(4432)$ on the right.

Remark 3.17. In this case where $M(\boldsymbol{\lambda})=n(\boldsymbol{\lambda})$, the LLT polynomial $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)$ is the transformed modified Hall-Littlewood polynomial $\tilde{H}_{\lambda}(\boldsymbol{x} ; q)$, which has many connections in algebraic combinatorics [Hag07, Hai02].

There is another useful linear relationship between LLT polynomials, which we can think of as a deletion-contraction relation. It will be convenient for us to rearrange this relation as follows, so that we add an edge and contract, rather than delete an edge and contract.

Figure 3.1: An example of using commuting and cycling to show that $\boldsymbol{H}(\lambda) \in \mathcal{S}(\boldsymbol{\lambda})$.

Lemma 3.18. [Tom21, Lemma 3.17] Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip with $l\left(R_{i+1}\right)>l\left(R_{i}\right)$ and $R_{i} \leftrightarrow R_{i+1}$. Define the horizontal-strips

$$
\begin{align*}
\lambda^{\prime} & =\left(R_{1}, \ldots, R_{i+1}, R_{i}, \ldots, R_{n}\right) \text { and } \tag{3.8}\\
\boldsymbol{\lambda}^{\prime \prime} & =\left(R_{1}, \ldots, R_{i} \cup R_{i+1}, R_{i} \cap R_{i+1}, \ldots, R_{n}\right) .
\end{align*}
$$

Then we have

$$
\begin{equation*}
G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=\frac{1}{q} G_{\boldsymbol{\lambda}^{\prime}}(\boldsymbol{x} ; q)+\frac{q-1}{q} G_{\boldsymbol{\lambda}^{\prime \prime}}(\boldsymbol{x} ; q) . \tag{3.9}
\end{equation*}
$$

Note that by Proposition 3.10, Part 1, the condition $R_{i} \leftrightarrow R_{i+1}$ implies that $r\left(R_{i}\right) \geqslant \ell\left(R_{i+1}\right)-1$, so the row $R_{i} \cup R_{i+1}$ makes sense.

We now describe the weighted graphs associated to these horizontal-strips $\boldsymbol{\lambda}^{\prime}$ and $\boldsymbol{\lambda}^{\prime \prime}$.
Lemma 3.19. [Tom21, Proposition 3.18] Let R_{1}, R_{2}, and R be rows with $R_{1} \leftrightarrow R_{2}$ and $l\left(R_{2}\right)>l\left(R_{1}\right)$ and let $M=M\left(R_{1}, R_{2}\right), M_{1}=M\left(R_{1}, R\right)$, and $M_{2}=M\left(R_{2}, R\right)$. Then

$$
\begin{align*}
M\left(R_{2}, R_{1}\right) & =M+1, \tag{3.10}\\
M\left(R_{1} \cap R_{2}, R\right) & =\min \left\{M, M_{1}, M_{2}\right\}, \text { and } \tag{3.11}\\
M\left(R_{1} \cup R_{2}, R\right) & =\min \left\{|R|, \max \left\{M_{1}, M_{2}, M_{1}+M_{2}-M\right\}\right\} . \tag{3.12}
\end{align*}
$$

Remark 3.20. Lemma 3.19 describes exactly how the weighted graphs of the horizontal-strips in (3.8) can be obtained from $\Pi=\Pi(\boldsymbol{\lambda})$. The weighted graph Π^{\prime} is obtained from Π by increasing the weight of the edge $\left(R_{i}, R_{i+1}\right)$ by one. The weighted graph $\Pi^{\prime \prime}$ is obtained from Π by replacing R_{i} and R_{i+1} by new vertices $R_{i} \cap R_{i+1}$ and $R_{i} \cup R_{i+1}$ of weights M and $\left|R_{i}\right|+\left|R_{i+1}\right|-M$ respectively, joined by an edge of weight M, and joining them to each other vertex R by edges of weights given in (3.11) and (3.12). In particular, we have

$$
\begin{equation*}
n\left(\boldsymbol{\lambda}^{\prime}\right)=n(\boldsymbol{\lambda}), M\left(\boldsymbol{\lambda}^{\prime}\right)=M(\boldsymbol{\lambda})+1, \text { and } n\left(\boldsymbol{\lambda}^{\prime \prime}\right)<n(\boldsymbol{\lambda}) \tag{3.13}
\end{equation*}
$$

so the relation (3.9) will allow us to perform induction on $n(\boldsymbol{\lambda})$ and on $n(\boldsymbol{\lambda})-M(\boldsymbol{\lambda})$.
Example 3.21. Let $\boldsymbol{\lambda}=(4 / 0,5 / 4,6 / 1,8 / 5)$ and note that $l\left(R_{4}\right)>l\left(R_{3}\right)$ and $R_{3} \leftrightarrow R_{4}$. Therefore, letting $\boldsymbol{\lambda}^{\prime}=(4 / 0,5 / 4,8 / 5,6 / 1)$ and $\boldsymbol{\lambda}^{\prime \prime}=(4 / 0,5 / 4,8 / 1,6 / 5)$, we have that

$$
\begin{equation*}
G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=\frac{1}{q} G_{\boldsymbol{\lambda}^{\prime}}(\boldsymbol{x} ; q)+\frac{q-1}{q} G_{\boldsymbol{\lambda}^{\prime \prime}}(\boldsymbol{x} ; q) . \tag{3.14}
\end{equation*}
$$

The horizontal-strips $\boldsymbol{\lambda}, \boldsymbol{\lambda}^{\prime}$, and $\boldsymbol{\lambda}^{\prime \prime}$, and their weighted graphs $\Pi(\boldsymbol{\lambda}), \Pi\left(\boldsymbol{\lambda}^{\prime}\right)$, and $\Pi\left(\boldsymbol{\lambda}^{\prime \prime}\right)$ are given below. We can think of $\Pi(\boldsymbol{\lambda})$ and $\Pi\left(\boldsymbol{\lambda}^{\prime \prime}\right)$ as a deletion and contraction of $\Pi\left(\boldsymbol{\lambda}^{\prime}\right)$.

Our strategy is to replace $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ by similar horizontal-strips to which we can apply (3.9). We make the following definition.

Definition 3.22. Let $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ be horizontal-strips with $\Pi(\boldsymbol{\lambda}) \cong \Pi(\boldsymbol{\mu})$. A good substitute for $(\boldsymbol{\lambda}, \boldsymbol{\mu})$ is a pair of horizontal-strips $\left(\boldsymbol{\lambda}^{\prime}, \boldsymbol{\mu}^{\prime}\right)$, where $\boldsymbol{\lambda}^{\prime}=\left(R_{1}, \ldots, R_{n}\right) \in \mathcal{S}(\boldsymbol{\lambda})$ and $\boldsymbol{\mu}^{\prime}=\left(S_{1}, \ldots, S_{n}\right) \in \mathcal{S}(\boldsymbol{\mu})$ satisfy

$$
\begin{equation*}
l\left(R_{1}\right)<l\left(R_{2}\right), R_{1} \leftrightarrow R_{2}, l\left(S_{1}\right)<l\left(S_{2}\right), S_{1} \leftrightarrow S_{2}, \tag{3.15}
\end{equation*}
$$

and $\varphi_{1}=1$ and $\varphi_{2}=2$, where $\varphi: \Pi\left(\boldsymbol{\lambda}^{\prime}\right) \xrightarrow{\sim} \Pi\left(\boldsymbol{\mu}^{\prime}\right)$. A single horizontal-strip $\boldsymbol{\lambda}$ is good if for any horizontal-strip $\boldsymbol{\mu}$ such that $\Pi(\boldsymbol{\lambda}) \cong \Pi(\boldsymbol{\mu})$, there is a good substitute for $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.

We now state a key Lemma. The proof is quite technical so we postpone it to Section 5.
Lemma 3.23. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip with $n(\boldsymbol{\lambda})-M(\boldsymbol{\lambda}) \geqslant 1$. Suppose that $\boldsymbol{\lambda}$ satisfies the condition that

> Theorem 2.7 holds for horizontal-strips $\boldsymbol{\lambda}^{\prime}$ and $\boldsymbol{\mu}^{\prime}$ with either $$
n\left(\boldsymbol{\lambda}^{\prime}\right)<n(\boldsymbol{\lambda}) \text {, or with } n\left(\boldsymbol{\lambda}^{\prime}\right)=n(\boldsymbol{\lambda}) \text { and } M\left(\boldsymbol{\lambda}^{\prime}\right)>M(\boldsymbol{\lambda}) .
$$

Then $\boldsymbol{\lambda}$ is good.

We are now ready to prove that our key Lemma implies our main Theorem.
Proof of Theorem 2.7 assuming Lemma 3.23. We use induction on $n(\boldsymbol{\lambda})$. If $n(\boldsymbol{\lambda})=0$, then $\boldsymbol{\lambda}$ has only one row and the result follows from Proposition 3.5, Part 1 , so assume that $n(\boldsymbol{\lambda}) \geqslant 1$ and that Theorem 2.7 holds for horizontal-strips $\boldsymbol{\lambda}^{\prime}$ and $\boldsymbol{\mu}^{\prime}$ with $n\left(\boldsymbol{\lambda}^{\prime}\right)<n(\boldsymbol{\lambda})$. We also use
induction on $n(\boldsymbol{\lambda})-M(\boldsymbol{\lambda})$. If $n(\boldsymbol{\lambda})-M(\boldsymbol{\lambda})=0$, then the result follows from Lemma 3.15, so assume that $n(\boldsymbol{\lambda})-M(\boldsymbol{\lambda}) \geqslant 1$ and that Theorem 2.7 holds for horizontal-strips $\boldsymbol{\lambda}^{\prime}$ and $\boldsymbol{\mu}^{\prime}$ with $n\left(\boldsymbol{\lambda}^{\prime}\right)=n(\boldsymbol{\lambda})$ and $n\left(\boldsymbol{\lambda}^{\prime}\right)-M\left(\boldsymbol{\lambda}^{\prime}\right)<n(\boldsymbol{\lambda})-M(\boldsymbol{\lambda})$. This is exactly the condition (3.16), so assuming Lemma 3.23, we have that $\boldsymbol{\lambda}$ is good.

Now by replacing $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ and $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ by a good substitute as necessary, we may assume that $l\left(R_{1}\right)<l\left(R_{2}\right), R_{1} \not \leftrightarrow R_{2}, l\left(S_{1}\right)<l\left(S_{2}\right), S_{1} \not \leftrightarrow S_{2}$, and $\varphi_{1}=1$ and $\varphi_{2}=2$, where $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$. Consider the horizontal-strips

$$
\begin{equation*}
\boldsymbol{\lambda}^{\prime}=\left(R_{2}, R_{1}, R_{3}, \ldots, R_{n}\right) \text { and } \boldsymbol{\lambda}^{\prime \prime}=\left(R_{1} \cup R_{2}, R_{1} \cap R_{2}, R_{3}, \ldots, R_{n}\right) \tag{3.17}
\end{equation*}
$$

and similarly define $\boldsymbol{\mu}^{\prime}$ and $\boldsymbol{\mu}^{\prime \prime}$. Lemma 3.19 describes exactly how to construct $\Pi\left(\boldsymbol{\lambda}^{\prime}\right)$ and $\Pi\left(\boldsymbol{\lambda}^{\prime \prime}\right)$ from $\Pi(\boldsymbol{\lambda})$, and therefore we have $\Pi\left(\boldsymbol{\lambda}^{\prime}\right) \cong \Pi\left(\boldsymbol{\mu}^{\prime}\right)$ and $\Pi\left(\boldsymbol{\lambda}^{\prime \prime}\right) \cong \Pi\left(\boldsymbol{\mu}^{\prime \prime}\right)$. By (3.13), our induction hypothesis implies that $G_{\boldsymbol{\lambda}^{\prime}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}^{\prime}}(\boldsymbol{x} ; q)$ and $G_{\boldsymbol{\lambda}^{\prime \prime}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}^{\prime \prime}}(\boldsymbol{x} ; q)$. Therefore, by (3.9), we have

$$
\begin{equation*}
G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=\frac{1}{q} G_{\boldsymbol{\lambda}^{\prime}}(\boldsymbol{x} ; q)+\frac{q-1}{q} G_{\boldsymbol{\lambda}^{\prime \prime}}(\boldsymbol{x} ; q)=\frac{1}{q} G_{\boldsymbol{\mu}^{\prime}}(\boldsymbol{x} ; q)+\frac{q-1}{q} G_{\boldsymbol{\mu}^{\prime \prime}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}}(\boldsymbol{x} ; q) . \tag{3.18}
\end{equation*}
$$

This completes the proof.

4. A connection to extended chromatic symmetric functions

Theorem 2.7 tells us that if Π is an admissible weighted graph, then there is a well-defined horizontal-strip LLT polynomial $G_{\Pi}(\boldsymbol{x} ; q)$ given by setting $G_{\Pi}(\boldsymbol{x} ; q)=G_{\Pi(\boldsymbol{\lambda})}(\boldsymbol{x} ; q)$, where $\boldsymbol{\lambda}$ is any horizontal-strip with $\Pi \cong \Pi(\boldsymbol{\lambda})$. We now apply Theorem 2.7 by exploring a connection between $G_{\Pi}(\boldsymbol{x} ; q)$ and the extended chromatic symmetric function defined by Crew and Spirkl [CS20].
Definition 4.1. [CS20, Equation 1] Let G be a vertex-weighted graph. The extended chromatic symmetric function of G is

$$
\begin{equation*}
X_{G}(\boldsymbol{x})=\sum_{\substack{\kappa: G \rightarrow \mathbb{N} \\ \kappa \text { proper }}} \prod_{\substack{ \\ }} x_{\kappa(v)}^{w(v)}, \tag{4.1}
\end{equation*}
$$

where $w(v)$ denotes the weight of the vertex v.
Their motivation was to establish a deletion-contraction relation [CS20, Lemma 2], which exists for the chromatic polynomial of a graph but not for the chromatic symmetric function. Aliniaeifard, Wang, and van Willigenburg used this deletion-contraction relation to prove some equalities of extended chromatic symmetric functions [AWvW21, Theorem 4.12, Theorem 7.3]. In this section, we will use our deletion-contraction relation in Lemma 3.18 to extend these results to equalities of horizontal-strip LLT polynomials.

It will be convenient to first define the following operations and relations on compositions.
Definition 4.2. Let $\alpha=\alpha_{1} \cdots \alpha_{n}$ and $\beta=\beta_{1} \cdots \beta_{m}$ be compositions. The reverse of α is $\alpha^{\text {rev }}=\alpha_{n} \cdots \alpha_{1}$. The concatenation and near-concatenation of α and β are

$$
\begin{equation*}
\alpha \cdot \beta=\alpha_{1} \cdots \alpha_{n} \beta_{1} \cdots \beta_{m} \text { and } \alpha \odot \beta=\alpha_{1} \cdots \alpha_{n-1}\left(\alpha_{n}+\beta_{1}\right) \beta_{2} \cdots \beta_{m} \tag{4.2}
\end{equation*}
$$

The composition of α and β, defined by Billera, Thomas, and van Willigenburg [BTvW06, Section 3] is

$$
\begin{equation*}
\alpha \circ \beta=\beta^{\odot \alpha_{1}} \cdots \beta^{\odot \alpha_{n}} \tag{4.3}
\end{equation*}
$$

where $\beta^{\odot k}$ denotes the k-fold near-concatenation of β. We say that β is a coarsening of α or alternatively that α is a refinement of β, denoted $\alpha \prec \beta$, if β can be obtained from α by summing adjacent parts. We also define the multiset $\mathcal{M}(\alpha)=\{\lambda(\beta): \alpha \prec \beta\}$, where $\lambda(\beta)$ denotes the partition determined by rearranging the parts of β in weakly decreasing order.

There is a bijection between the set C^{N} of compositions α with sum N and subsets of $\{1, \ldots, N-1\}$ given by taking the partial sums of α, other than N itself. Under this bijection, a coarsening corresponds to a subset so the partially ordered set $\left(C^{N}, \prec\right)$ is (anti-)isomorphic to the boolean lattice B_{N-1}. In particular, by Möbius inversion, if A is an abelian group and $f, g: C^{N} \rightarrow A$, then

$$
\begin{equation*}
f(\alpha)=\sum_{\alpha \prec \beta} g(\beta) \text { if and only if } g(\alpha)=\sum_{\alpha \prec \beta}(-1)^{\ell(\alpha)-\ell(\beta)} f(\beta) . \tag{4.4}
\end{equation*}
$$

Example 4.3. Consider the compositions $\alpha=21231, \beta=23121, \delta=12$, and $\gamma=21$. We have that $\delta^{\text {rev }}=\gamma$,

$$
\begin{align*}
& \delta \circ \gamma=\gamma^{\odot 1} \cdot \gamma^{\odot 2}=\gamma \cdot(\gamma \odot \gamma)=21 \cdot(21 \odot 21)=21 \cdot 231=21231=\alpha, \text { and } \tag{4.5}\\
& \gamma \circ \gamma=\gamma^{\odot 2} \cdot \gamma^{\odot 1}=(\gamma \odot \gamma) \cdot \gamma=(21 \odot 21) \cdot 21=231 \cdot 21=23121=\beta . \tag{4.6}
\end{align*}
$$

Some coarsenings of α include 3231, obtained by summing the first two parts, and 54 , obtained by summing the first three parts and the last two parts. We have that

$$
\mathcal{M}(\alpha)=\left\{\begin{array}{c}
32211,5211,4221,3321,3321,62,621, \tag{4.7}\\
531,531,432,432,81,72,63,54,9
\end{array}\right\}=\mathcal{M}(\beta) .
$$

Billera, Thomas, and van Willigenburg found the following characterization of when we have $\mathcal{M}(\alpha)=\mathcal{M}(\beta)$ in terms of their operation \circ.

Theorem 4.4. [BTvW06, Theorem 4.1] Let α and β be compositions. We have $\mathcal{M}(\alpha)=\mathcal{M}(\beta)$ if and only if there are factorizations

$$
\begin{equation*}
\alpha=\delta^{(1)} \circ \cdots \circ \delta^{(k)} \text { and } \beta=\gamma^{(1)} \circ \cdots \circ \gamma^{(k)} \tag{4.8}
\end{equation*}
$$

so that every $\gamma^{(i)}$ is either $\delta^{(i)}$ or $\delta^{(i) \text { rev }}$.
Example 4.5. We saw that the compositions α and β from Example 4.3 can be factorized as $\alpha=\delta \circ \gamma$ and $\beta=\delta^{\text {rev }} \circ \gamma$, so it follows from Theorem 4.4 that $\mathcal{M}(\alpha)=\mathcal{M}(\beta)$.

Their motivation was to classify equalities of ribbon Schur functions.
Definition 4.6. Let α be a composition. The ribbon Schur function $r_{\alpha}(\boldsymbol{x})$ is the skew Schur function indexed by the skew diagram whose i-th row has α_{i} cells and where adjacent rows overlap in exactly one column. When α has a single part k, then $r_{\alpha}(\boldsymbol{x})$ is the complete homogeneous symmetric function $h_{k}(\boldsymbol{x})$. If $\lambda=\lambda_{1} \cdots \lambda_{\ell}$ is a partition, we also set $h_{\lambda}(\boldsymbol{x})=h_{\lambda_{1}}(\boldsymbol{x}) \cdots h_{\lambda_{\ell}}(\boldsymbol{x})$.

Theorem 4.7. [BTvW06, Equation 2.2, Proposition 2.1, Theorem 2.6] The ribbon Schur functions satisfy the relation

$$
\begin{equation*}
r_{\alpha}(\boldsymbol{x}) r_{\beta}(\boldsymbol{x})=r_{\alpha \cdot \beta}(\boldsymbol{x})+r_{\alpha \odot \beta}(\boldsymbol{x}) . \tag{4.9}
\end{equation*}
$$

By iterating (4.9), we have

$$
\begin{equation*}
h_{\lambda(\alpha)}(\boldsymbol{x})=r_{\alpha_{1}}(\boldsymbol{x}) \cdots r_{\alpha_{\ell}}(\boldsymbol{x})=\sum_{\alpha \prec \beta} r_{\beta}(\boldsymbol{x}) \tag{4.10}
\end{equation*}
$$

and therefore, by (4.4), we have

$$
\begin{equation*}
r_{\alpha}(\boldsymbol{x})=\sum_{\alpha \prec \beta}(-1)^{\ell(\alpha)-\ell(\beta)} h_{\lambda(\beta)}(\boldsymbol{x})=\sum_{\lambda \in \mathcal{M}(\alpha)}(-1)^{\ell(\alpha)-\ell(\lambda)} h_{\lambda}(\boldsymbol{x}) . \tag{4.11}
\end{equation*}
$$

In particular, because the $h_{\lambda}(\boldsymbol{x})$ are linearly independent, we have $r_{\alpha}(\boldsymbol{x})=r_{\beta}(\boldsymbol{x})$ if and only if $\mathcal{M}(\alpha)=\mathcal{M}(\beta)$.

Aliniaeifard, Wang, and van Willigenburg found a similar result for the extended chromatic symmetric functions of vertex-weighted paths. These graphs can be indexed by compositions.
Definition 4.8. Let $\alpha=\alpha_{1} \cdots \alpha_{n}$ be a composition. Define P_{α} to be the weighted graph with vertices $\left\{v_{1}, \ldots, v_{n}\right\}$ where v_{i} has weight α_{i}, and with edges $\left(v_{i}, v_{i+1}\right)$ of weight one for $1 \leqslant i \leqslant n-1$. When α has a single part k, then the extended chromatic symmetric function $X_{P_{k}}(\boldsymbol{x})$ is the power sum symmetric function $p_{k}(\boldsymbol{x})$. If $\lambda=\lambda_{1} \cdots \lambda_{\ell}$ is a partition, we also set $p_{\lambda}(\boldsymbol{x})=p_{\lambda_{1}}(\boldsymbol{x}) \cdots p_{\lambda_{\ell}}(\boldsymbol{x})$.

Proposition 4.9. Let $\alpha=\alpha_{1} \cdots \alpha_{n}$ be a composition of N and consider the horizontal-strip $\boldsymbol{\lambda}_{\alpha}=\left(R_{1}, \ldots, R_{n}\right)$, where $R_{i}=\left(\sum_{j=1}^{n-i+1} \alpha_{j}\right) /\left(\sum_{j=1}^{n-i} \alpha_{j}\right)$. Then $\Pi\left(\boldsymbol{\lambda}_{\alpha}\right) \cong P_{\alpha}$.
Proof. We have that $\left|R_{i}\right|=\alpha_{n-i+1}$ is the weight of $v_{n-i+1}, M\left(R_{i}, R_{i+1}\right)=r\left(R_{i+1}\right)-l\left(R_{i}\right)+2=1$, and $M\left(R_{i}, R_{j}\right)=0$ for $j \geqslant i+2$.

Example 4.10. Let $\alpha=21231$ and $\beta=23121$ as in Example 4.3. The horizontal-strips $\boldsymbol{\lambda}_{\alpha}=(9 / 8,8 / 5,5 / 3,3 / 2,2 / 0)$ and $\boldsymbol{\lambda}_{\beta}=(9 / 8,8 / 6,6 / 5,5 / 2,2 / 0)$ and the paths P_{α} and P_{β} are given below. Because the (nonzero) edge weights are all one, they are not written.

Theorem 4.11. [AWvW21, Equation 2, Equation 3, Theorem 4.12] The extended chromatic symmetric functions satisfy the relation

$$
\begin{equation*}
X_{P_{\alpha}}(\boldsymbol{x}) X_{P_{\beta}}(\boldsymbol{x})=X_{P_{\alpha, \beta}}(\boldsymbol{x})+X_{P_{\alpha \odot \beta}}(\boldsymbol{x}) . \tag{4.12}
\end{equation*}
$$

By iterating (4.12), we have

$$
\begin{equation*}
p_{\lambda(\alpha)}(\boldsymbol{x})=X_{P_{\alpha_{1}}}(\boldsymbol{x}) \cdots X_{P_{\alpha_{\ell}}}(\boldsymbol{x})=\sum_{\alpha \prec \beta} X_{P_{\beta}}(\boldsymbol{x}) \tag{4.13}
\end{equation*}
$$

and therefore, by (4.4), we have

$$
\begin{equation*}
X_{P_{\alpha}}(\boldsymbol{x})=\sum_{\alpha \prec \beta}(-1)^{\ell(\alpha)-\ell(\beta)} p_{\lambda(\beta)}(\boldsymbol{x})=\sum_{\lambda \in \mathcal{M}(\alpha)}(-1)^{\ell(\alpha)-\ell(\lambda)} p_{\lambda}(\boldsymbol{x}) . \tag{4.14}
\end{equation*}
$$

In particular, because the $p_{\lambda}(\boldsymbol{x})$ are linearly independent, we have $X_{P_{\alpha}}(\boldsymbol{x})=X_{P_{\beta}}(\boldsymbol{x})$ if and only if $\mathcal{M}(\alpha)=\mathcal{M}(\beta)$.

We now show the analogous result for horizontal-strip LLT polynomials of vertex-weighted paths.

Theorem 4.12. The horizontal-strip LLT polynomials satisfy the relation

$$
\begin{equation*}
G_{P_{\alpha}}(\boldsymbol{x} ; q) G_{P_{\beta}}(\boldsymbol{x} ; q)=\frac{1}{q} G_{P_{\alpha, \beta}}(\boldsymbol{x} ; q)+\frac{q-1}{q} G_{P_{\alpha \odot \beta}}(\boldsymbol{x} ; q) . \tag{4.15}
\end{equation*}
$$

By iterating (4.15), we have

$$
\begin{equation*}
h_{\lambda(\alpha)}(\boldsymbol{x})=G_{P_{\alpha_{1}}}(\boldsymbol{x} ; q) \cdots G_{P_{\alpha_{\ell}}}(\boldsymbol{x} ; q)=\sum_{\alpha \prec \beta} \frac{(q-1)^{\ell(\alpha)-\ell(\beta)}}{q^{\ell(\alpha)-1}} G_{P_{\beta}}(\boldsymbol{x} ; q) \tag{4.16}
\end{equation*}
$$

and rearranging, we have

$$
\begin{equation*}
q^{\ell(\alpha)-1}(q-1)^{-\ell(\alpha)} h_{\lambda(\alpha)}(\boldsymbol{x})=\sum_{\alpha \prec \beta}(q-1)^{-\ell(\beta)} G_{P_{\beta}}(\boldsymbol{x} ; q) . \tag{4.17}
\end{equation*}
$$

Therefore, by (4.4), we have

$$
\begin{equation*}
(q-1)^{-\ell(\alpha)} G_{P_{\alpha}}(\boldsymbol{x} ; q)=\sum_{\alpha \prec \beta} q^{\ell(\beta)-1}(q-1)^{-\ell(\beta)} h_{\lambda(\beta)}(\boldsymbol{x}) \tag{4.18}
\end{equation*}
$$

and rearranging again, we have

$$
\begin{equation*}
G_{P_{\alpha}}(\boldsymbol{x} ; q)=\sum_{\alpha<\beta} q^{\ell(\beta)-1}(q-1)^{\ell(\alpha)-\ell(\beta)} h_{\lambda(\beta)}(\boldsymbol{x})=\sum_{\lambda \in \mathcal{M}(\alpha)} q^{\ell(\lambda)-1}(q-1)^{\ell(\alpha)-\ell(\lambda)} h_{\lambda}(\boldsymbol{x}) . \tag{4.19}
\end{equation*}
$$

In particular, because the $h_{\lambda}(\boldsymbol{x})$ are linearly independent, we have $G_{P_{\alpha}}(\boldsymbol{x} ; q)=G_{P_{\beta}}(\boldsymbol{x} ; q)$ if and only if $\mathcal{M}(\alpha)=\mathcal{M}(\beta)$.

Proof. We need only prove the first statement (4.15). Let $\boldsymbol{\lambda}_{\alpha}=\left(R_{1}, \ldots, R_{n}\right)$ and $\boldsymbol{\lambda}_{\beta}=\left(S_{1}, \ldots, S_{m}\right)$ be the horizontal-strips defined in Proposition 4.9. Suppose that α has sum N and consider the horizontal-strips

$$
\begin{align*}
\boldsymbol{\lambda} & =\left(N+S_{1}, \ldots, N+S_{m-1}, R_{1}, N+S_{m}, R_{2}, \ldots, R_{n}\right), \tag{4.20}\\
\boldsymbol{\lambda}^{\prime} & =\left(N+S_{1}, \ldots, N+S_{m-1}, N+S_{m}, R_{1}, R_{2} \ldots, R_{n}\right), \text { and } \\
\boldsymbol{\lambda}^{\prime \prime} & =\left(N+S_{1}, \ldots, N+S_{m-1},\left(N+S_{m-1}\right) \cup R_{1},\left(N+S_{m-1}\right) \cap R_{1}, R_{2}, \ldots, R_{n}\right) .
\end{align*}
$$

Note that $\boldsymbol{\lambda}$ was constructed by translating $\boldsymbol{\lambda}_{\beta}$, concatenating, and switching rows $\left(R_{t}, N+S_{t^{\prime}}\right)$ with $\left(t, t^{\prime}\right) \neq(1, m)$, which commute by Proposition 3.10, Part 1 because $\ell\left(N+S_{t^{\prime}}\right)>r\left(R_{t}\right)+1$. Therefore, we have that $\Pi(\boldsymbol{\lambda})$ is the disjoint union of P_{α} and P_{β} and so $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{P_{\alpha}}(\boldsymbol{x} ; q) G_{P_{\beta}}(\boldsymbol{x} ; q)$. Lemma 3.19 describes exactly how the weighted graphs $\Pi\left(\boldsymbol{\lambda}^{\prime}\right)$ and $\Pi\left(\boldsymbol{\lambda}^{\prime \prime}\right)$ are constructed and we see that $\Pi\left(\boldsymbol{\lambda}^{\prime}\right) \cong P_{\alpha \cdot \beta}$ and $\Pi\left(\boldsymbol{\lambda}^{\prime \prime}\right) \cong P_{\alpha \odot \beta}$. Because $\ell\left(N+S_{m}\right)=r\left(R_{1}\right)+1>l\left(R_{1}\right)$, we have $R_{1} \not \leftrightarrow\left(N+S_{m}\right)$ by Proposition 3.10, Part 3 and now (4.15) follows from Lemma 3.18.

We take a moment to summarize these results.
Corollary 4.13. Let α and β be compositions. The following are equivalent.

1. $\mathcal{M}(\alpha)=\mathcal{M}(\beta)$
2. $\alpha=\delta^{(1)} \circ \cdots \circ \delta^{(k)}$ and $\beta=\gamma^{(1)} \circ \cdots \circ \gamma^{(k)}$, with every $\gamma^{(i)}=\delta^{(i)}$ or $\delta^{(i) \text { rev }}$
3. $r_{\alpha}(\boldsymbol{x})=r_{\beta}(\boldsymbol{x})$
4. $X_{P_{\alpha}}(\boldsymbol{x})=X_{P_{\beta}}(\boldsymbol{x})$
5. $G_{P_{\alpha}}(\boldsymbol{x} ; q)=G_{P_{\beta}}(\boldsymbol{x} ; q)$

Proof. We have $(1) \Longleftrightarrow(2)$ by Theorem $4.4,(1) \Longleftrightarrow(3)$ by Theorem 4.7, (1) \Longleftrightarrow (4) by Theorem 4.11, and $(1) \Longleftrightarrow(5)$ by Theorem 4.12 .

Aliniaeifard, Wang, and van Willigenburg generalize Theorem 4.11 to the following construction.

Definition 4.14. [AWvW21, Definition 7.1] Let G and H be vertex-weighted graphs with distinguished (not necessarily distinct) vertices $a_{G}, z_{G} \in G$ and $a_{H}, z_{H} \in H$. The concatenation of G and H, denoted $G \cdot H$, is the disjoint union of G and H with an edge joining z_{G} and a_{H}. The near-concatenation of G and H, denoted $G \odot H$, is the graph $G \cdot H$ with the edge $\left(z_{G}, a_{H}\right)$ contracted. If $\alpha=\alpha_{1} \cdots \alpha_{n}$ is a composition, the composition of α and G is the graph

$$
\begin{equation*}
\alpha \circ G=G^{\odot \alpha_{1}} \cdots G^{\odot \alpha_{n}} \tag{4.21}
\end{equation*}
$$

where $G^{\odot k}$ denotes the k-fold near-concatenation of G.

Example 4.15. For any composition α, we have $\alpha \circ P_{1} \cong P_{\alpha}$. For $G=P_{121}$ with $a=v_{1}$ and $z=v_{2}$, the graphs $12 \circ G$ and $21 \circ G$ are given below.

Note that it follows from the definition that

$$
\begin{equation*}
(\alpha \cdot \beta) \circ G=(\alpha \circ G) \cdot(\beta \circ G) \text { and }(\alpha \odot \beta) \circ G=(\alpha \circ G) \odot(\beta \circ G) \tag{4.22}
\end{equation*}
$$

Theorem 4.16. [AWvW21, Theorem 7.3] Let G be a vertex-weighted graph with distinguished vertices a and z. If $\mathcal{M}(\alpha)=\mathcal{M}(\beta)$, then $X_{P_{\alpha \circ G}}(\boldsymbol{x})=X_{P_{\beta \circ G}}(\boldsymbol{x})$. Moreover, if G is simple and connected, then the converse holds.

We prove a similar result for horizontal-strip LLT polynomials, but we require a condition on the distinguished vertices to ensure that the resulting weighted graphs be admissible. Recall that content reading order is the total ordering on cells by increasing content and from bottom to top along constant content lines.

Definition 4.17. Let $\Pi=\Pi(\boldsymbol{\lambda})$ be an admissible weighted graph. Let a and z be the vertices corresponding to the rows containing the first and last cells of $\boldsymbol{\lambda}$ in content reading order. Then we define concatenation, near-concatenation, and composition as in Definition 4.14 with respect to these distinguished vertices a and z.

Theorem 4.18. Let $\Pi=\Pi(\boldsymbol{\lambda})$ be an admissible weighted graph. For any composition α, the weighted graph $\alpha \circ \Pi$ is admissible, and if $\mathcal{M}(\alpha)=\mathcal{M}(\beta)$, then $G_{\alpha \circ \Pi}(\boldsymbol{x} ; q)=G_{\beta \circ \Pi}(\boldsymbol{x} ; q)$.

Proof. Let $\Pi_{1}=\Pi(\boldsymbol{\lambda})$ and $\Pi_{2}=\Pi(\boldsymbol{\mu})$ be admissible weighted graphs. We first show that $\Pi_{1} \cdot \Pi_{2}$ and $\Pi_{1} \odot \Pi_{2}$ are admissible, which proves the first statement. By cycling and translating, we may assume without loss of generality that $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ has a unique cell $u \in R_{1}$ of maximal content $N-1$ and $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{m}\right)$ has a unique cell $v \in S_{m}$ of minimal content 0 . Then by translating $\boldsymbol{\mu}$ and concatenating, we can consider the horizontal-strip ($R_{1}, \ldots, R_{n}, N+S_{1}$, $\ldots, N+S_{m}$), whose weighted graph is the disjoint union $\Pi_{1} \sqcup \Pi_{2}$. Consider the horizontal-strips

$$
\begin{align*}
\boldsymbol{\lambda} & =\left(N+S_{1}, \ldots, N+S_{m-1}, R_{1}, N+S_{m}, R_{2}, \ldots, R_{n}\right), \tag{4.23}\\
\boldsymbol{\lambda}^{\prime} & =\left(N+S_{1}, \ldots, N+S_{m-1}, N+S_{m}, R_{1}, R_{2} \ldots, R_{n}\right), \text { and } \\
\boldsymbol{\lambda}^{\prime \prime} & =\left(N+S_{1}, \ldots, N+S_{m-1},\left(N+S_{m-1}\right) \cup R_{1},\left(N+S_{m-1}\right) \cap R_{1}, R_{2}, \ldots, R_{n}\right) .
\end{align*}
$$

Note that $\boldsymbol{\lambda}$ was constructed by switching rows $\left(R_{t}, N+S_{t^{\prime}}\right)$ with $\left(t, t^{\prime}\right) \neq(1, m)$, which commute by Proposition 3.10, Part 1 because $\ell\left(N+S_{t^{\prime}}\right)>r\left(R_{t}\right)+1$. Therefore, we have that $\Pi(\boldsymbol{\lambda}) \cong \Pi_{1} \sqcup \Pi_{2}$ and so $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\Pi_{1}}(\boldsymbol{x} ; q) G_{\Pi_{2}}(\boldsymbol{x} ; q)$. Lemma 3.19 describes exactly how the weighted graphs $\Pi\left(\boldsymbol{\lambda}^{\prime}\right)$ and $\Pi\left(\boldsymbol{\lambda}^{\prime \prime}\right)$ are constructed and we see that $\Pi\left(\boldsymbol{\lambda}^{\prime}\right) \cong \Pi_{1} \cdot \Pi_{2}$
and $\Pi\left(\boldsymbol{\lambda}^{\prime \prime}\right) \cong \Pi_{1} \odot \Pi_{2}$, so indeed these weighted graphs are admissible. Because $\ell\left(N+S_{m}\right)=r\left(R_{1}\right)+1>l\left(R_{1}\right)$, we have $R_{1} \leftrightarrow\left(N+S_{m}\right)$ by Proposition 3.10, Part 3 and now by Lemma 3.18 we have

$$
\begin{equation*}
G_{\Pi_{1}}(\boldsymbol{x} ; q) G_{\Pi_{2}}(\boldsymbol{x} ; q)=\frac{1}{q} G_{\Pi_{1} \cdot \Pi_{2}}(\boldsymbol{x} ; q)+\frac{q-1}{q} G_{\Pi_{1} \odot \Pi_{2}}(\boldsymbol{x} ; q) . \tag{4.24}
\end{equation*}
$$

Therefore, by (4.22), for compositions α and β, the horizontal-strip LLT polynomials satisfy the relation

$$
\begin{equation*}
G_{\alpha \circ \Pi}(\boldsymbol{x} ; q) G_{\beta \circ \Pi}(\boldsymbol{x} ; q)=\frac{1}{q} G_{(\alpha \cdot \beta) \circ \Pi}(\boldsymbol{x} ; q)+\frac{q-1}{q} G_{(\alpha \odot \beta) \circ \Pi}(\boldsymbol{x} ; q) . \tag{4.25}
\end{equation*}
$$

By iterating (4.25), we have

$$
\begin{equation*}
G_{\Pi \odot \alpha_{1}}(\boldsymbol{x} ; q) \cdots G_{\Pi \odot \alpha_{\ell}}(\boldsymbol{x} ; q)=\sum_{\alpha \prec \beta} \frac{(q-1)^{\ell(\alpha)-\ell(\beta)}}{q^{\ell(\alpha)-1}} G_{\beta \circ \Pi}(\boldsymbol{x} ; q) \tag{4.26}
\end{equation*}
$$

and rearranging, we have

$$
\begin{equation*}
q^{\ell(\alpha)-1}(q-1)^{-\ell(\alpha)} \prod_{i=1}^{\ell} G_{\Pi \odot \alpha_{i}}(\boldsymbol{x} ; q)=\sum_{\alpha \prec \beta}(q-1)^{-\ell(\beta)} G_{\beta \circ \Pi}(\boldsymbol{x} ; q) . \tag{4.27}
\end{equation*}
$$

Therefore, by (4.4), we have

$$
\begin{equation*}
(q-1)^{-\ell(\alpha)} G_{\alpha \circ \Pi}(\boldsymbol{x} ; q)=\sum_{\alpha<\beta} q^{\ell(\beta)-1}(q-1)^{-\ell(\beta)} \prod_{i=1}^{\ell} G_{\Pi \odot \beta_{i}}(\boldsymbol{x} ; q) \tag{4.28}
\end{equation*}
$$

and rearranging again, we have

$$
\begin{align*}
G_{\alpha \circ \Pi}(\boldsymbol{x} ; q) & =\sum_{\alpha<\beta} q^{\ell(\beta)-1}(q-1)^{\ell(\alpha)-\ell(\beta)} \prod_{i=1}^{\ell} G_{\Pi \odot \beta_{i}}(\boldsymbol{x} ; q) \tag{4.29}\\
& =\sum_{\lambda \in \mathcal{M}(\alpha)} q^{\ell(\lambda)-1}(q-1)^{\ell(\alpha)-\ell(\lambda)} \prod_{i=1}^{\ell} G_{\Pi \odot \lambda_{i}}(\boldsymbol{x} ; q) .
\end{align*}
$$

In particular, if $\mathcal{M}(\alpha)=\mathcal{M}(\beta)$, then $G_{\alpha \circ \Pi}(\boldsymbol{x} ; q)=G_{\beta \circ \Pi}(\boldsymbol{x} ; q)$.

5. Proof of Lemma 3.23

In this section we prove Lemma 3.23, which completes the proof of Theorem 2.7. The general idea will be to use rotating, cycling, and commuting to move rows into the desired position. We will be able to do this unless there is a noncommuting path, which is a concept we will introduce in Definition 5.4. In Lemma 5.15 and Lemma 5.17, we will describe the structure of a minimal noncommuting path very precisely, which will allow us to rule out several cases. We begin with the following definition, which expresses a relationship between rows that will be convenient to consider.

Definition 5.1. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip. We write $R_{i} \prec R_{j}$ if $M_{i, j}=\left|R_{i}\right|$ and $R_{i} \nprec R_{j}$ otherwise. We also write $R_{i} \nprec R_{j}$ to mean that $R_{i} \prec R_{j}$ and $R_{j} \nprec R_{i}$.

Proposition 5.2. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip.

1. Suppose that $i<j$. Then we have $R_{i} \prec R_{j}$ if and only if either $R_{i} \subseteq R_{j}$ or $R_{i} \subseteq R_{j}^{+}$.
2. Suppose that $i>j$. Then we have $R_{i} \prec R_{j}$ if and only if either $R_{i} \subseteq R_{j}$ or $R_{i} \subseteq R_{j}^{-}$.
3. We have $R_{i} \prec R_{j}$ and $R_{i} \leftrightarrow R_{j}$ if and only if $R_{i} \subseteq R_{j}$.

Proof.

1. If $R_{i} \prec R_{j}$, then by definition we have

$$
M_{i, j}=\left|R_{i}\right|= \begin{cases}\left|R_{i} \cap R_{j}\right| & \text { if } l\left(R_{i}\right) \leqslant l\left(R_{j}\right), \tag{5.1}\\ \left|R_{i} \cap R_{j}^{+}\right| & \text {if } l\left(R_{i}\right)>l\left(R_{j}\right),\end{cases}
$$

and therefore we must have $R_{i} \subseteq R_{j}$ or $R_{i} \subseteq R_{j}^{+}$. Conversely, if $R_{i} \subseteq R_{j}^{+}$, then $l\left(R_{i}\right)>l\left(R_{j}\right)$ and $M_{i, j}=\left|R_{i}\right|$ by Proposition 3.10, Part 2, while if $R_{i} \nsubseteq R_{j}^{+}$and $R_{i} \subseteq R_{j}$, then $l\left(R_{i}\right)=l\left(R_{j}\right)$ and again $M_{i, j}=\left|R_{i}\right|$ by Proposition 3.10, Part 2.
2. This follows from the previous part by considering a rotation of $\boldsymbol{\lambda}$.
3. If $R_{i} \subseteq R_{j}$, then $R_{i} \prec R_{j}$ by the previous parts and we have $l\left(R_{j}\right) \leqslant l\left(R_{i}\right) \leqslant r\left(R_{i}\right) \leqslant r\left(R_{j}\right)$, so $R_{i} \leftrightarrow R_{j}$ by Proposition 3.10, Part 2. Conversely, if $i<j, R_{i} \prec R_{j}$, and $R_{i} \nsubseteq R_{j}$, then by Part 1 we have $R_{i} \subseteq R_{j}^{+}$, so $l\left(R_{j}\right)<l\left(R_{i}\right) \leqslant r\left(R_{j}\right)+1 \leqslant r\left(R_{i}\right)$ and $R_{i} \nleftarrow R_{j}$ by Proposition 3.10, Part 3. The case where $i>j$ follows by rotating.

Example 5.3. Let $\boldsymbol{\lambda}=\left(R_{1}, R_{2}, R_{3}\right)=(7 / 4,6 / 3,5 / 0)$ as in the example below. We have $M\left(R_{1}, R_{2}\right)=3=\left|R_{1}\right|=\left|R_{2}\right|$, so $R_{1} \prec R_{2}$ and $R_{2} \prec R_{1}$. We have $M\left(R_{1}, R_{3}\right)=2<\left|R_{1}\right|$, so $R_{1} \nprec R_{3}$, and we have $M\left(R_{2}, R_{3}\right)=3=\left|R_{2}\right|<\left|R_{3}\right|$, so $R_{2} \nprec R_{3}$.

Informally, we can think of the relation $R_{i} \prec R_{j}$ as being very similar to the relation $R_{i} \subseteq R_{j}$, except that we may need to shift a row by one cell. Because of this possible shift, the relation \prec is not transitive. In the above example, we have $R_{1} \prec R_{2}$ and $R_{2} \prec R_{3}$, but $R_{1} \nprec R_{3}$.

The following concept will be important to define the potential obstruction to commuting.
Definition 5.4. A sequence of $n \geqslant 3$ rows $\left(R_{1}, \ldots, R_{n}\right)$ is a noncommuting path from R_{1} to R_{n} if $R_{i} \not \leftrightarrow R_{i+1}$ for every $1 \leqslant i \leqslant n-1$. A noncommuting path is minimal if there is no subsequence of rows ($R_{1}=R_{i_{1}}, R_{i_{2}}, \ldots, R_{i_{k}}=R_{n}$) with $i_{1}<i_{2}<\cdots<i_{k}$ and $3 \leqslant k<n$ that forms a noncommuting path from R_{1} to R_{n}.

In particular, if $\left(R_{1}, \ldots, R_{n}\right)$ is a minimal noncommuting path, then we have $R_{i} \leftrightarrow R_{j}$ for every i, j with $1<|j-i|<n-1$. Because we require a noncommuting path to have length at least 3 , we cannot conclude that $R_{1} \leftrightarrow R_{n}$ in a minimal noncommuting path.

Our next Lemma shows that, given two rows R_{i} and R_{j} of $\boldsymbol{\lambda}$ with $i<j$, either there is a minimal noncommuting path in $\boldsymbol{\lambda}$ from R_{i} to R_{j}, or we may assume that $j=i+1$.

Lemma 5.5. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip and let $1 \leqslant i<j \leqslant n$. Then one of the following holds.

1. There is a minimal noncommuting path $\left(R_{i}=R_{i_{1}}, \ldots, R_{i_{k}}=R_{j}\right)$ in $\boldsymbol{\lambda}$.
2. There is a horizontal-strip $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right) \in \mathcal{S}(\boldsymbol{\lambda})$ and an isomorphism of weighted graphs $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$ such that $l\left(S_{\varphi_{i}}\right)=l\left(R_{i}\right), l\left(S_{\varphi_{j}}\right)=l\left(R_{j}\right)$, and $\varphi_{j}=\varphi_{i}+1$.

Proof. We use induction on $j-i$. If $j-i=1$, then the second possibility holds by simply taking $\boldsymbol{\lambda}=\boldsymbol{\mu}$, so assume that $j-i \geqslant 2$. If $R_{j} \leftrightarrow R_{j-1}$, then by commuting we have $\left(R_{1}, \ldots, R_{j}, R_{j-1}, \ldots, R_{n}\right) \in \mathcal{S}(\boldsymbol{\lambda})$ and we are done by our induction hypothesis on $j-i$, so we may assume that $R_{j} \leftrightarrow R_{j-1}$. Similarly, if $R_{j-1} \leftrightarrow R_{t}$ for every $i \leqslant t \leqslant j-2$, then by commuting we would have $\left(R_{1}, \ldots, R_{j-1}, R_{i}, \ldots, R_{j}, \ldots, R_{n}\right) \in \mathcal{S}(\boldsymbol{\lambda})$ and we are again done by induction. So we may assume that $R_{j-1} \not \leftrightarrow R_{t}$ for some $i \leqslant t \leqslant j-2$, and continuing in this way there must be a noncommuting path in $\boldsymbol{\lambda}$ from R_{i} to R_{j}. Finally, if this noncommuting path is not minimal, then it contains a minimal one.

Examples of minimal noncommuting paths are given in Figure 5.1. Informally, our next goal is to show that all minimal noncommuting paths look like these examples. Specifically, our goal is to prove Lemma 5.15, which describes what a minimal noncommuting path may look like, and Lemma 5.17, which describes the extent to which our weighted graph determines the structure of a minimal noncommuting path. This will allow us to prove Corollary 5.19, which proves Lemma 3.23 in many cases. We will first prove some elementary Propositions.

Proposition 5.6. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip.

1. Suppose that $R_{i} \leftrightarrow R_{j}, R_{j} \leftrightarrow R_{k}, R_{i} \leftrightarrow R_{k}$, and that the integers $l\left(R_{j}\right)-l\left(R_{i}\right)$ and $l\left(R_{k}\right)-l\left(R_{j}\right)$ have the same sign. Then $M_{i, k}=0$.
2. Suppose that $R_{i} \leftrightarrow R_{j}, R_{j} \leftrightarrow R_{k}, R_{i} \leftrightarrow R_{k}$, and that the integers $l\left(R_{j}\right)-l\left(R_{i}\right)$ and $l\left(R_{k}\right)-l\left(R_{j}\right)$ have opposite signs. Then $R_{i} \prec R_{k}$ or $R_{k} \prec R_{i}$.
3. Suppose that $R_{i} \leftrightarrow R_{j}, R_{i} \leftrightarrow R_{k}$, and $R_{j} \leftrightarrow R_{k}$. Then $R_{j} \prec R_{i}$ if and only if $R_{k} \prec R_{i}$.

Note that in (1) and (2), because $R_{i} \leftrightarrow R_{j}$ and $R_{j} \leftrightarrow R_{k}$, the integers $l\left(R_{j}\right)-l\left(R_{i}\right)$ and $l\left(R_{k}\right)-l\left(R_{j}\right)$ are nonzero by Proposition 3.10, Part 2.

Figure 5.1: Some examples of minimal noncommuting paths.

Proof of Proposition 5.6.

1. Without loss of generality, we may assume that $l\left(R_{i}\right)<l\left(R_{j}\right)<l\left(R_{k}\right)$, and then because $R_{i} \leftrightarrow R_{j}$ and $R_{j} \leftrightarrow R_{k}$, by Corollary 3.13, Part 2, we must have $r\left(R_{i}\right)<r\left(R_{j}\right)<r\left(R_{k}\right)$ as well. But now we cannot have $R_{i} \subseteq R_{k}$ or $R_{k} \subseteq R_{i}$, so by Proposition 5.2, Part 3, we cannot have $R_{i} \prec R_{k}$ or $R_{k} \prec R_{i}$. Therefore, because $R_{i} \leftrightarrow R_{k}$, by Corollary 3.13, Part 1, we must have $M_{i, k}=0$.
2. By rotating, we may assume without loss of generality that $l\left(R_{i}\right) \leqslant l\left(R_{j}\right)-1$ and $l\left(R_{k}\right) \leqslant l\left(R_{j}\right)-1$. Because $R_{i} \leftrightarrow R_{j}$ and $R_{k} \not \leftrightarrow R_{j}$, by Proposition 3.10, Part 1, we have $r\left(R_{i}\right) \geqslant l\left(R_{j}\right)-1$ and $r\left(R_{k}\right) \geqslant l\left(R_{j}\right)-1$. But now $M_{i, k}>0$ and because $R_{i} \leftrightarrow R_{k}$, we have by Corollary 3.13, Part 1 , that $R_{i} \prec R_{k}$ or $R_{k} \prec R_{i}$.
3. By symmetry, it suffices to prove that $R_{j} \prec R_{i}$ implies $R_{k} \prec R_{i}$. Suppose that $R_{j} \prec R_{i}$, and then because $R_{i} \leftrightarrow R_{j}$, by Proposition 5.2, Part 1, we have $R_{j} \subseteq R_{i}$, that is $l\left(R_{i}\right) \leqslant l\left(R_{j}\right) \leqslant r\left(R_{j}\right) \leqslant r\left(R_{i}\right)$. Suppose that $l\left(R_{k}\right)<l\left(R_{i}\right)$. By Proposition 3.10 Parts 1 and 2 , if $r\left(R_{k}\right)<l\left(R_{i}\right)-1 \leqslant l\left(R_{j}\right)-1$, then $R_{j} \leftrightarrow R_{k}$, if $l\left(R_{i}\right)-1 \leqslant r\left(R_{k}\right) \leqslant$ $r\left(R_{i}\right)-1$, then $R_{i} \leftrightarrow R_{k}$, and if $r\left(R_{k}\right) \geqslant r\left(R_{i}\right) \geqslant r\left(R_{j}\right)$, then again $R_{j} \leftrightarrow R_{k}$, a contradiction in all cases, so we must have $l\left(R_{k}\right) \geqslant l\left(R_{i}\right)$. Similarly, by rotating, we must have $r\left(R_{k}\right) \leqslant r\left(R_{i}\right)$, so we have $R_{k} \subseteq R_{i}$ and $R_{k} \prec R_{i}$.

Proposition 5.7. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a minimal noncommuting path.

1. If $R_{i} \prec R_{j}$ and $R_{j} \prec R_{i}$ for some $j \geqslant i+2$, then we must have $n=3$ or $n=4$ and $j=i+2$. In particular, if $n \geqslant 5$, then $R_{i} \prec R_{j}$ implies that in fact $R_{i} \nprec R_{j}$.
2. If $R_{j} \prec R_{i}$ for some $j \geqslant i+2$, then $R_{k} \prec R_{i}$ for every $k \geqslant i+2$, with the possible exception of $k=n$ if $i=1$. Similarly, if $R_{j} \prec R_{i}$ for some $j \leqslant i-2$, then $R_{k} \prec R_{i}$ for every $k \leqslant i-2$, with the possible exception of $k=1$ if $i=n$.
3. Suppose that $R_{j} \precsim R_{i}$ for some $i \geqslant j+2$, that i is minimal with these two properties, and that $i \neq n$ if $j=1$. Then either $l\left(R_{i-1}\right)>\cdots>l\left(R_{j}\right)$ and $l\left(R_{i}\right)<l\left(R_{i-1}\right)$, or $l\left(R_{i-1}\right)<\cdots<l\left(R_{j}\right)$ and $l\left(R_{i}\right)>l\left(R_{i-1}\right)$.

Remark 5.8. Figure 5.8 shows that if $n \leqslant 4$, then it is possible to have a minimal noncommuting path with $R_{1} \prec R_{3}$ and $R_{3} \prec R_{1}$. If $n \geqslant 5$, then this will not happen because there will be some $R_{t} \not \leftrightarrow R_{t^{\prime}}$ with $t^{\prime} \geqslant t+2$ and $\left(t, t^{\prime}\right) \neq(1, n)$, contradicting minimality. Informally, (2) states that if we are contained in R_{i}, then we must remain stuck in R_{i} and (3) states that if R_{j} is contained in some minimal R_{i}, then we must move in the same direction until R_{i}.

Proof of Proposition 5.7.

1. Because $j \geqslant i+2$, we have $R_{i} \leftrightarrow R_{j}$ by minimality and therefore $R_{i}=R_{j}$ by Proposition 5.2. Now $R_{i+1} \leftrightarrow R_{j}$, so by minimality of the noncommuting path we must have $j=i+2$. Similarly, if $i \geqslant 2$, then $R_{i-1} \leftrightarrow R_{j}$, so we must then have $i=2$ and $j=n=4$; if $j \leqslant n-1$, then $R_{i} \leftrightarrow R_{j+1}$, so we must have $i=1$ and $j=3=n-1$ so again $n=4$; and otherwise we have $i=1$ and $j=3=n$.

Figure 5.2: A minimal noncommuting path with $R_{1} \prec R_{3}$ and $R_{3} \prec R_{1}$.
2. If $i+2 \leqslant k \leqslant n-1, R_{k} \prec R_{i}$, and $k+1 \neq n$ in the case of $i=1$, then because $R_{i} \leftrightarrow R_{k}$, $R_{i} \leftrightarrow R_{k+1}$, and $R_{k} \leftrightarrow R_{k+1}$, by Proposition 5.6, Part 3, we have $R_{k} \prec R_{i}$ if and only if $R_{k+1} \prec R_{i}$, so the first statement follows by induction on k and the second statement follows by rotating.
3. Recall that because $R_{j} \prec R_{i}$ and $R_{j} \leftrightarrow R_{i}$, by Proposition 5.2 we must have $l\left(R_{i}\right) \leqslant l\left(R_{j}\right)$ and $r\left(R_{i}\right) \geqslant r\left(R_{j}\right)$. Suppose that either $l\left(R_{j+1}\right)>l\left(R_{j}\right)$ and $l\left(R_{t+1}\right)<l\left(R_{t}\right)$ for some minimal $j+1 \leqslant t \leqslant i-2$, or $l\left(R_{j+1}\right)<l\left(R_{j}\right)$ and $l\left(R_{t+1}\right)>l\left(R_{t}\right)$ for some minimal $j+1 \leqslant t \leqslant i-2$, so in particular, $n \geqslant 5$. Then by Proposition 5.6, Part 2 , we have either $R_{t-1} \prec R_{t+1}$ or $R_{t+1} \prec R_{t-1}$. If $R_{t-1} \prec R_{t+1}$, then by the previous two parts we have $R_{j} \precsim R_{t+1}$, contradicting minimality of i. If $R_{t+1} \prec R_{t-1}$, then by the previous two parts we have $R_{i} \precsim R_{t-1}$, but now by Proposition 5.2, Part 3, we have $R_{j} \subsetneq R_{i} \subsetneq R_{t-1}$, so $R_{j} \leftrightarrow R_{t-1}, t-1 \geqslant j+2$, and $R_{j} \nprec R_{t-1}$, again contradicting minimality of i. Therefore, we must have either $l\left(R_{i-1}\right)>\cdots>l\left(R_{j}\right)$ and $l\left(R_{i}\right) \leqslant l\left(R_{j}\right)<l\left(R_{i-1}\right)$, or $l\left(R_{i-1}\right)<\cdots<l\left(R_{j}\right)$ and $r\left(R_{i}\right) \geqslant r\left(R_{j}\right)>r\left(R_{i-1}\right)$, so $l\left(R_{i}\right)>l\left(R_{i-1}\right)$ by Corollary 3.13, Part 2.

Proposition 5.9. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip with $R_{1} \leftrightarrow R_{2}$ and let $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ be a horizontal-strip with $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$. Let $i=\varphi_{1}$ and $j=\varphi_{2}$. If $l\left(R_{2}\right)>l\left(R_{1}\right)$, also assume that $l\left(S_{j}\right)>l\left(S_{i}\right)$. Then

$$
\begin{equation*}
l\left(S_{j}\right)-l\left(S_{i}\right) \geqslant l\left(R_{2}\right)-l\left(R_{1}\right) \text { with equality only if } i<j . \tag{5.2}
\end{equation*}
$$

Remark 5.10. Informally, Proposition 5.9 states that the leftmost possible position of S_{j}, given the weighted graph, occurs when S_{j} is above S_{i} and $S_{i} \not \leftrightarrow S_{j}$. The following example demonstrates the necessity of the hypothesis that if $l\left(R_{2}\right)>l\left(R_{1}\right)$, then $l\left(S_{j}\right)>l\left(S_{i}\right)$.

Proof of Proposition 5.9. We calculate directly, using (3.6) and noting that $|R|=r(R)-l(R)+1$. If $l\left(R_{2}\right)<l\left(R_{1}\right)$, then the statement holds unless $l\left(S_{j}\right)<l\left(S_{i}\right)$, and because $R_{1} \not \leftrightarrow R_{2}$, we have by Corollary 3.13, Part 3, that $M_{1,2}(\boldsymbol{\lambda})=M_{i, j}(\boldsymbol{\mu})>0$. By Proposition 3.10, Parts 2 and 3, we
have $M_{1,2}(\boldsymbol{\lambda})=r\left(R_{2}\right)-l\left(R_{1}\right)+2$ and we either have $M_{i, j}(\boldsymbol{\mu})=r\left(S_{j}\right)-l\left(S_{i}\right)+1+\chi(i<j)$, or $M_{i, j}(\boldsymbol{\mu})=\min \left\{\left|S_{i}\right|,\left|S_{j}\right|\right\} \leqslant r\left(S_{j}\right)-l\left(S_{i}\right)+1+\chi(i<j)$. Therefore we have

$$
\begin{align*}
l\left(S_{j}\right)-l\left(S_{i}\right) & =r\left(S_{j}\right)-\left|S_{j}\right|+1-l\left(S_{i}\right) \geqslant M_{i, j}(\boldsymbol{\mu})-\left|S_{j}\right|-\chi(i<j) \tag{5.3}\\
& \geqslant M_{1,2}(\boldsymbol{\lambda})-\left|R_{2}\right|-1=r\left(R_{2}\right)-\left|R_{2}\right|+1-l\left(R_{1}\right)=l\left(R_{2}\right)-l\left(R_{1}\right),
\end{align*}
$$

with equality only if $i<j$.
Similarly, if $l\left(R_{2}\right)>l\left(R_{1}\right)$, then by hypothesis we have $l\left(S_{j}\right)>l\left(S_{i}\right)$, and because $R_{1} \nleftarrow R_{2}$, we have by Corollary 3.13, Part 3, that $M_{i, j}(\boldsymbol{\mu})<\min \left\{\left|S_{i}\right|,\left|S_{j}\right|\right\}$. By Proposition 3.10, Parts 1 and 3, we have $M_{1,2}(\boldsymbol{\lambda})=r\left(R_{1}\right)-l\left(R_{2}\right)+1$ and we either have

$$
M_{i, j}(\boldsymbol{\mu})=r\left(S_{i}\right)-l\left(S_{j}\right)+1+\chi(i<j) \quad \text { or } \quad M_{i, j}(\boldsymbol{\mu})=0 \geqslant r\left(S_{i}\right)-l\left(S_{j}\right)+1+\chi(i<j) .
$$

Therefore we have

$$
\begin{align*}
l\left(S_{j}\right)-l\left(S_{i}\right) & =l\left(S_{j}\right)-r\left(S_{i}\right)-1+\left|S_{i}\right| \geqslant\left|S_{i}\right|-M_{i, j}(\boldsymbol{\mu})+\chi(i>j) \tag{5.4}\\
& \geqslant\left|R_{1}\right|-M_{1,2}(\boldsymbol{\lambda})=l\left(R_{2}\right)-r\left(R_{1}\right)-1+\left|R_{1}\right|=l\left(R_{2}\right)-l\left(R_{1}\right),
\end{align*}
$$

with equality only if $i<j$.
Proposition 5.11. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip with $l\left(R_{1}\right)<l\left(R_{3}\right)$ and $R_{1} \nleftarrow R_{3}$. Let $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ be a horizontal-strip and $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$ such that $\varphi_{1}<\varphi_{3}$, $l\left(S_{\varphi_{1}}\right)<l\left(S_{\varphi_{3}}\right)$, and $S_{\varphi_{1}} \nleftarrow S_{\varphi_{3}}$. Then if $l\left(R_{2}\right)>l\left(R_{1}\right)$ and $R_{1} \nleftarrow R_{2}$, then $l\left(S_{\varphi_{2}}\right)>l\left(S_{\varphi_{1}}\right)$. Similarly, if $l\left(R_{3}\right)>l\left(R_{2}\right)$ and $R_{2} \leftrightarrow R_{3}$, then $l\left(S_{\varphi_{3}}\right)>l\left(S_{\varphi_{2}}\right)$.

Remark 5.12. Informally, Proposition 5.11 describes the extent to which rows R_{1} and R_{3} with $l\left(R_{1}\right)<l\left(R_{3}\right)$ and $R_{1} \leftrightarrow R_{3}$, given the weighted graph data, determine the relative horizontal position of another row R_{2}.

Proof of Proposition 5.11. We first suppose for a contradiction that $l\left(R_{2}\right)>l\left(R_{1}\right)$ and $R_{1} \leftrightarrow R_{2}$, but $l\left(S_{\varphi_{2}}\right) \leqslant l\left(S_{\varphi_{1}}\right)$. Because $l\left(R_{2}\right)>l\left(R_{1}\right)$ and $R_{1} \leftrightarrow R_{2}$, we have by Corollary 3.13, Part 2, that $r\left(R_{2}\right)>r\left(R_{1}\right)$ and by Corollary 3.13, Part 3, that $M_{1,2}(\boldsymbol{\lambda})<\min \left\{\left|R_{1}\right|,\left|R_{2}\right|\right\}$. Therefore, we must have $M_{\varphi_{1}, \varphi_{2}}(\boldsymbol{\mu})<\min \left\{\left|S_{\varphi_{1}}\right|,\left|S_{\varphi_{2}}\right|\right\}$ and by Proposition 3.10, Part 2, we have that $l\left(S_{\varphi_{2}}\right)<l\left(S_{\varphi_{1}}\right)<l\left(S_{\varphi_{3}}\right)$ and $r\left(S_{\varphi_{2}}\right)<r\left(S_{\varphi_{1}}\right)<r\left(S_{\varphi_{3}}\right)$. In particular, we have $M_{\varphi_{2}, \varphi_{3}}(\boldsymbol{\mu})<\min \left\{\left|S_{\varphi_{2}}\right|,\left|S_{\varphi_{3}}\right|\right\}$, so $M_{2,3}(\boldsymbol{\lambda})<\min \left\{\left|R_{2}\right|,\left|R_{3}\right|\right\}$ and $l\left(R_{2}\right) \neq l\left(R_{3}\right)$.

Now if $l\left(R_{2}\right)<l\left(R_{3}\right)$, then by (3.5) we have

$$
\begin{equation*}
M_{2,3}(\boldsymbol{\lambda})=r\left(R_{2}\right)-l\left(R_{3}\right)+1>r\left(R_{1}\right)-l\left(R_{3}\right)+1=M_{1,3}(\boldsymbol{\lambda}), \tag{5.5}
\end{equation*}
$$

but if $r\left(S_{\varphi_{2}}\right)<l\left(S_{\varphi_{3}}\right)-1$, then $M_{\varphi_{2}, \varphi_{3}}(\boldsymbol{\mu})=0 \leqslant M_{\varphi_{1}, \varphi_{3}}(\boldsymbol{\mu})$, and if $r\left(S_{\varphi_{2}}\right) \geqslant l\left(S_{\varphi_{3}}\right)-1$, then

$$
\begin{equation*}
M_{\varphi_{2}, \varphi_{3}}(\boldsymbol{\mu})=r\left(S_{\varphi_{2}}\right)-l\left(S_{\varphi_{3}}\right)+1+\chi\left(\varphi_{2}>\varphi_{3}\right) \leqslant r\left(S_{\varphi_{1}}\right)-l\left(S_{\varphi_{3}}\right)+1=M_{\varphi_{1}, \varphi_{3}}(\boldsymbol{\mu}), \tag{5.6}
\end{equation*}
$$

a contradiction in either case. Similarly, if $l\left(R_{2}\right)>l\left(R_{3}\right)$, then by (3.5) we have

$$
\begin{equation*}
M_{2,3}(\boldsymbol{\lambda})=r\left(R_{3}\right)-l\left(R_{2}\right)+2>r\left(R_{1}\right)-l\left(R_{2}\right)+1=M_{1,2}(\boldsymbol{\lambda}), \tag{5.7}
\end{equation*}
$$

but if $r\left(S_{\varphi_{2}}\right)<l\left(S_{\varphi_{3}}\right)-1$, then $M_{\varphi_{2}, \varphi_{3}}(\boldsymbol{\mu})=0 \leqslant M_{\varphi_{1}, \varphi_{2}}(\boldsymbol{\mu})$, and if $r\left(S_{\varphi_{2}}\right) \geqslant l\left(S_{\varphi_{3}}\right)-1$, then

$$
\begin{equation*}
M_{\varphi_{2}, \varphi_{3}}(\boldsymbol{\mu})=r\left(S_{\varphi_{2}}\right)-l\left(S_{\varphi_{3}}\right)+1+\chi\left(\varphi_{2}>\varphi_{3}\right) \leqslant r\left(S_{\varphi_{2}}\right)-l\left(S_{\varphi_{3}}\right)+1=M_{\varphi_{1}, \varphi_{2}}(\boldsymbol{\mu}), \tag{5.8}
\end{equation*}
$$

a contradiction in either case. This proves the first claim and the second follows by rotating.

Figure 5.3: A minimal noncommuting path $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{5}\right)$ with $l\left(R_{5}\right)>\cdots>l\left(R_{1}\right)$ and a horizontal-strip $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{5}\right)$ with $\Pi(\boldsymbol{\lambda}) \cong \Pi(\boldsymbol{\mu})$.

Proposition 5.13. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a minimal noncommuting path with $l\left(R_{n}\right)>\cdots>l\left(R_{1}\right)$. Let $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ be a horizontal-strip, $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$, and let i be such that $l\left(S_{i}\right)$ is minimal and j be such that $l\left(S_{j}\right)$ is maximal. Then

$$
\begin{equation*}
r\left(S_{j}\right)-l\left(S_{i}\right) \geqslant r\left(R_{n}\right)-l\left(R_{1}\right) \text { with equality only if } i=1 \text { and } j=n . \tag{5.9}
\end{equation*}
$$

Example 5.14. Proposition 5.13 describes a situation like the one in Figure 5.3. Informally, when the rows of $\boldsymbol{\lambda}$ move to the right, we could have $M_{t, t+1}(\boldsymbol{\lambda})=0$ and the corresponding rows could be permuted in $\boldsymbol{\mu}$. This is a crucial example to keep in mind. We may not have $\ell\left(S_{\varphi_{t+1}}\right)>\ell\left(S_{\varphi_{t}}\right)$ for every t, but we can deduce about the position of the rightmost row S_{j}.

Proof of Proposition 5.13. Note that we cannot directly apply Proposition 5.9 because we do not know that $l\left(S_{\varphi_{t+1}}\right)>l\left(S_{\varphi_{t}}\right)$ for every t. Instead, we will reorder the rows of $\boldsymbol{\mu}$ and compute directly. By Corollary 3.13, Part 3, we have $M_{t, t+1}(\boldsymbol{\lambda})<\min \left\{\left|R_{t}\right|,\left|R_{t+1}\right|\right\}$, so $M_{\varphi_{t}, \varphi_{t+1}}(\boldsymbol{\mu})<\min \left\{\left|S_{\varphi_{t}}\right|,\left|S_{\varphi_{t+1}}\right|\right\}$ and in particular the $l\left(S_{\varphi_{t}}\right)$ are distinct. Let σ be the permutation that sorts the rows of $\boldsymbol{\mu}$ so that

$$
\begin{equation*}
l\left(S_{i}\right)=l\left(S_{\sigma_{1}}\right)<l\left(S_{\sigma_{2}}\right)<\cdots<l\left(S_{\sigma_{n-1}}\right)<l\left(S_{\sigma_{n}}\right)=l\left(S_{j}\right) . \tag{5.10}
\end{equation*}
$$

By Proposition 5.6, Part 1, we have $M_{t, t^{\prime}}(\boldsymbol{\lambda})=0$ if $\left|t^{\prime}-t\right| \geqslant 2$. Now by (3.6), we have

$$
\begin{align*}
r\left(S_{j}\right)-l\left(S_{i}\right) & =l\left(S_{\sigma_{n}}\right)-l\left(S_{\sigma_{1}}\right)+\left|S_{\sigma_{n}}\right|-1 \tag{5.11}\\
& =l\left(S_{\sigma_{n-1}}\right)-l\left(S_{\sigma_{1}}\right)+\left|S_{\sigma_{n}}\right|+\left|S_{\sigma_{n-1}}\right|-M_{\sigma_{n-1}, \sigma_{n}}(\boldsymbol{\mu})-1+\chi\left(\sigma_{n-1}>\sigma_{n}\right) \\
\cdots & =\sum_{t=1}^{n}\left|S_{\sigma_{t}}\right|-M(\boldsymbol{\mu})-1+\sum_{t=1}^{n-1} \chi\left(\sigma_{t}>\sigma_{t+1}\right) \\
& \geqslant \sum_{t=1}^{n}\left|R_{t}\right|-M(\boldsymbol{\lambda})-1 \\
\cdots & =l\left(R_{n-1}\right)-l\left(R_{1}\right)+\left|R_{n}\right|+\left|R_{n-1}\right|-M_{n-1, n}(\boldsymbol{\lambda})-1 \\
& =r\left(R_{n}\right)-l\left(R_{1}\right)+\left|R_{n}\right|-1=r\left(R_{n}\right)-l\left(R_{1}\right),
\end{align*}
$$

with equality only if $i=\sigma_{1}<\cdots<\sigma_{n}=j$, so $i=1$ and $j=n$.
We now describe the structure of a minimal noncommuting path $\left(R_{1}, \ldots, R_{n}\right)$ where we have $l\left(R_{1}\right)<l\left(R_{n}\right)$ and $R_{1} \not \leftrightarrow R_{n}$. Informally, such a minimal noncommuting path must look loosely like one of the examples in Figure 5.1.

Lemma 5.15. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a minimal noncommuting path with $n \geqslant 4, l\left(R_{1}\right)<l\left(R_{n}\right)$, and $R_{1} \leftrightarrow R_{n}$.

1. Suppose that there is no $i \geqslant 3$ for which $R_{1} \nprec R_{i}$ and that there is no $j \leqslant n-2$ for which $R_{n} \precsim R_{j}$. Then one of the following holds.

- We have $l\left(R_{2}\right)>l\left(R_{1}\right), l\left(R_{n-1}\right)<\cdots<l\left(R_{2}\right)$, and $l\left(R_{n}\right)>l\left(R_{n-1}\right)$.
- We have $l\left(R_{n-1}\right)>\cdots>l\left(R_{1}\right), R_{t} \prec R_{n}$ for $2 \leqslant t \leqslant n-2$, and $l\left(R_{n}\right)<l\left(R_{n-1}\right)$.
- We have $l\left(R_{2}\right)<l\left(R_{1}\right), l\left(R_{n}\right)>\cdots>l\left(R_{2}\right)$, and $R_{t} \prec R_{1}$ for $3 \leqslant t \leqslant n-1$.

2. Now suppose that $R_{1} \precsim R_{i}$ for some minimal $i \geqslant 3$, and that in fact $i=n-1$. Then $l\left(R_{n}\right)>l\left(R_{n-1}\right)$ and one of the following holds.

- We have $l\left(R_{i-1}\right)<\cdots<l\left(R_{1}\right)$ and $l\left(R_{i}\right)>l\left(R_{i-1}\right)$.
- We have $l\left(R_{i-1}\right)>\cdots>l\left(R_{1}\right), R_{t} \prec R_{n}$ for $2 \leqslant t \leqslant i-1$, and $l\left(R_{i}\right)<l\left(R_{i-1}\right)$.
- We have $n=4, l\left(R_{2}\right)>l\left(R_{1}\right), l\left(R_{3}\right)<l\left(R_{2}\right)$, and $R_{4} \precsim R_{2}$.

3. Now suppose that $R_{1} \nprec R_{i}$ for some minimal $i \geqslant 3$, and that $i \leqslant n-2$. Then $R_{n} \npreceq R_{i}$, so $R_{n} \precsim R_{j}$ for some maximal $i \leqslant j \leqslant n-2$. Additionally, one of the following holds.

- We have $l\left(R_{i-1}\right)<\cdots<l\left(R_{1}\right)$ and $l\left(R_{i}\right)>l\left(R_{i-1}\right)$.
- We have $i=j=3, l\left(R_{2}\right)>l\left(R_{1}\right), R_{n} \precsim R_{2}$, and $l\left(R_{3}\right)<l\left(R_{2}\right)$.

Similarly, one of the following holds.

- We have $l\left(R_{n}\right)<\cdots<l\left(R_{j+1}\right)$ and $l\left(R_{j+1}\right)>l\left(R_{j}\right)$.
- We have $i=j=n-2, l\left(R_{n}\right)>l\left(R_{n-1}\right), R_{1} \npreceq R_{n-1}$, and $l\left(R_{n-1}\right)<l\left(R_{n-2}\right)$.

Finally, we must have either $j=i$, or $j=i+1$ and $l\left(R_{j}\right)<l\left(R_{i}\right)$.
Remark 5.16. If the hypothesis of (1) does not hold, then $R_{1} \precsim R_{i}$ for some $i \geqslant 3$ or $R_{n} \precsim R_{j}$ for some $j \leqslant n-2$. By rotating, we may assume that $R_{1} \precsim R_{i}$ for some $i \geqslant 3$, and by Corollary 3.13, Part 3, we cannot have $R_{1} \prec R_{n}$, so $i \leqslant n-1$. Therefore (2) and (3) cover all of the cases we will need.

Proof of Lemma 5.15. Note that because $n \geqslant 4$, we must have $R_{2} \leftrightarrow R_{n}$ by minimality.
Suppose that there is no $i \geqslant 3$ for which $R_{1} \npreceq R_{i}$ and that there is no $j \leqslant n-2$ for which $R_{n} \precsim R_{j}$. Additionally, suppose that $l\left(R_{2}\right)>l\left(R_{1}\right)$. Because $l\left(R_{1}\right)<l\left(R_{n}\right)$, by Proposition 5.6, Part 2, we must have $R_{2} \prec R_{n}$ or $R_{n} \prec R_{2}$, so by our hypothesis we must have $R_{2} \prec R_{n}$ and by Proposition 5.7, Part 2, that $R_{t} \prec R_{n}$ for $2 \leqslant t \leqslant n-2$. Note that if $R_{2} \prec R_{k}$ for any $4 \leqslant k \leqslant n-1$, then we would have $R_{1} \prec R_{k}$ by Proposition 5.7, Part 2, and because $n \geqslant 5, R_{1} \precsim R_{k}$ by Proposition 5.7 Part 1, contradicting our hypothesis. Therefore, by Proposition 5.7, Part 3, we have either $l\left(R_{n-1}\right)<\cdots<l\left(R_{2}\right)$ and $l\left(R_{n}\right)>l\left(R_{n-1}\right)$ and the first possibility holds, or we have $l\left(R_{n-1}\right)>\cdots>l\left(R_{2}\right)>l\left(R_{1}\right)$ and $l\left(R_{n}\right)<l\left(R_{n-1}\right)$ and the second possibility holds. Now suppose that $l\left(R_{2}\right)<l\left(R_{1}\right)$. If $l\left(R_{n}\right)>l\left(R_{n-1}\right)$, then by rotating we can reduce to the case where $l\left(R_{2}\right)>l\left(R_{1}\right)$ and it follows that the third possibility holds, so it remains to consider the case where $l\left(R_{n}\right)<l\left(R_{n-1}\right)$. Because $l\left(R_{n-1}\right)>l\left(R_{n}\right)>$ $r\left(R_{2}\right) \geqslant l\left(R_{2}\right)$, we have $R_{2} \leftrightarrow R_{n-1}$ and $n \geqslant 5$, so Proposition 5.7, Part 1 applies. Also, we must have $l\left(R_{t+1}\right)>l\left(R_{t}\right)$ for some minimal $2 \leqslant t \leqslant n-2$. By Proposition 5.6, Part 2, we must have $R_{t-1} \prec R_{t+1}$ or $R_{t+1} \prec R_{t-1}$. However, by Proposition 5.7, Part 2, if $R_{t-1} \prec R_{t+1}$, then $R_{1} \precsim R_{t+1}$, and if $R_{t+1} \prec R_{t-1}$, then $R_{n} \precsim R_{t-1}$, contradicting our hypothesis in both cases.

Now suppose that $R_{1} \precsim R_{i}$ for some minimal $i \geqslant 3$, and that in fact $i=n-1$. Then $l\left(R_{n-1}\right) \leqslant l\left(R_{1}\right)<l\left(R_{n}\right)$ by Proposition 5.2. By Proposition 5.7, Part 2, we must have either $l\left(R_{i-1}\right)<\cdots<l\left(R_{1}\right)$ and $l\left(R_{i}\right)>l\left(R_{i-1}\right)$ and the first possibility holds, or we have $l\left(R_{i-1}\right)>\cdots>l\left(R_{1}\right) \geqslant l\left(R_{i}\right)$ and $l\left(R_{i}\right)<l\left(R_{i-1}\right)$. Then because $l\left(R_{n}\right)>l\left(R_{1}\right)$, by Proposition 5.6, Part 2, we must have either $R_{2} \prec R_{n}$, in which case we have $R_{t} \prec R_{n}$ for $2 \leqslant t \leqslant n-2=i-1$ by Proposition 5.7, Part 2, and the second possibility holds, or we have $R_{n} \precsim R_{2}$. In this case, if $n \geqslant 5$ then $R_{i} \prec R_{2}$ and $R_{2} \prec R_{i}$ by Proposition 5.7, Part 2, but this is impossible by Proposition 5.7, Part 1, so we must have $n=4$ and the third possibility holds.

Now suppose that $R_{1} \precsim R_{i}$ for some minimal $i \geqslant 3$, and that $i \leqslant n-2$, so in particular, $n \geqslant 5$ and Proposition 5.7, Part 1 applies. Then because $R_{1} \leftrightarrow R_{n}$, by Proposition 5.6, Part 3, we have $R_{n} \npreceq R_{i}$, so $R_{n} \precsim R_{j}$ for some maximal $i \leqslant j \leqslant n-2$. By Proposition 5.7, Part 3 we must have either $l\left(R_{i-1}\right)<\cdots<l\left(R_{1}\right)$ and $l\left(R_{i}\right)>l\left(R_{i-1}\right)$, in which case the first possibility holds, or we have $l\left(R_{i-1}\right)>\cdots>l\left(R_{1}\right)$ and $l\left(R_{i}\right)<l\left(R_{i-1}\right)$. But in this case, because $l\left(R_{n}\right)>l\left(R_{1}\right)$, by Proposition 5.6, Part 2, we have $R_{2} \prec R_{n}$ or $R_{n} \prec R_{2}$. If $R_{2} \prec R_{n}$, then by Proposition 5.7, Part 2, we would have $R_{j} \prec R_{n}$, which is impossible by definition of j, so we must have $R_{n} \precsim R_{2}$. If $j \geqslant 4$, then we would have $R_{j} \prec R_{2}$ by Proposition 5.7, Part 2, but because $R_{n} \prec R_{j}$ and $R_{1} \not \leftrightarrow R_{n}$, by Proposition 5.6, Part 3, we have $R_{1} \prec R_{j}$ and $R_{2} \prec R_{j}$ by Proposition 5.7, Part 2 again, which is impossible by Proposition 5.7, Part 1. Therefore, we must have $i=j=3$ and the second possibility holds. This proves the first claim and the second follows by rotating. Finally, if $j \geqslant i+2$, then by Proposition 5.7, Part 2, we would have $R_{i} \prec R_{j}$ and $R_{j} \prec R_{i}$, which is impossible by Proposition 5.7, Part 1, so we must have either $j=i$ or $j=i+1$. If $j=i+1$, then by Proposition 5.7, Part 2, we have $R_{i-1} \prec R_{j}$ and now $l\left(R_{j}\right) \leqslant l\left(R_{i-1}\right)<l\left(R_{i}\right)$ by Proposition 5.2. This completes the proof.

We now describe the image of a minimal noncommuting path under an isomorphism of weighted graphs.

Lemma 5.17. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a minimal noncommuting path with $l\left(R_{1}\right)<l\left(R_{n}\right)$ and $R_{1} \not \leftrightarrow R_{n}$. Let $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ and $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$ satisfy $\varphi_{1}=1, l\left(S_{1}\right)<l\left(S_{\varphi_{n}}\right)$, and $S_{1} \leftrightarrow S_{\varphi_{n}}$. Then $\varphi_{n}=n$.

Example 5.18. Informally, Lemma 5.17 describes a situation like the one below. The conditions $l\left(R_{1}\right)<l\left(R_{6}\right), R_{1} \not \leftrightarrow R_{6}, l\left(S_{1}\right)<l\left(S_{\varphi_{6}}\right)$, and $S_{1} \not \leftrightarrow S_{\varphi_{6}}$ fix the horizontal positions of R_{1}, R_{6}, S_{1}, and $S_{\varphi_{6}}$. Then if we have a minimal noncommuting path in $\boldsymbol{\lambda}$ from R_{1} to R_{6}, the row $S_{\varphi_{6}}$ must be above the other rows in $\boldsymbol{\mu}$. Note that the intermediate rows can be permuted as in this example.

Proof of Lemma 5.17. By translating all rows, we may assume without loss of generality that $l\left(R_{1}\right)=l\left(S_{1}\right)$, and then by (3.6) we have $l\left(R_{n}\right)=l\left(S_{\varphi_{n}}\right)$ as well. The idea is to repeatedly apply Proposition 5.9 and Proposition 5.13 to write the inequality $l\left(S_{\varphi_{n}}\right) \geqslant l\left(R_{n}\right)$, for which equality holds only if $\varphi_{n}=n$. Because equality does indeed hold, we will conclude that $\varphi_{n}=n$.

Case 0: We have $n=3$. By Proposition 5.11, if $l\left(R_{2}\right)>l\left(R_{1}\right)$, then $l\left(S_{\varphi_{2}}\right)>l\left(S_{1}\right)$, so by Proposition 5.9 we have $l\left(S_{\varphi_{2}}\right) \geqslant l\left(R_{2}\right)$. By Proposition 5.11 again, if $l\left(R_{3}\right)>l\left(R_{2}\right)$, then $l\left(S_{\varphi_{3}}\right)>l\left(S_{\varphi_{2}}\right)$, so by Proposition 5.9 we have $l\left(S_{\varphi_{3}}\right) \geqslant l\left(R_{3}\right)$ with equality only if $\varphi_{3}>\varphi_{2}$. Because equality does indeed hold, we must have $\varphi_{3}>\varphi_{2}$ and therefore $\varphi_{3}=3$.

We may now assume that $n \geqslant 4$, so it remains to consider the several possibilities outlined in Lemma 5.15. Cases 1a and 1b illustrate the main ideas.

Case 1: There is no $i \geqslant 3$ for which $R_{1} \precsim R_{i}$ and there is no $j \leqslant n-2$ for which $R_{n} \precsim R_{j}$.
Case 1a: We have $l\left(R_{2}\right)>l\left(R_{1}\right), l\left(R_{n-1}\right)<\cdots<l\left(R_{2}\right)$, and $l\left(R_{n}\right)>l\left(R_{n-1}\right)$. By Proposition 5.11, we have $l\left(S_{\varphi_{2}}\right)>l\left(S_{1}\right)$, so by Proposition 5.9 we have $l\left(S_{\varphi_{2}}\right) \geqslant l\left(R_{2}\right)$. By Proposition 5.9 again, we have $l\left(S_{\varphi_{n-1}}\right) \geqslant l\left(R_{n-1}\right)$ with equality only if $\varphi_{n-1}>\cdots>\varphi_{2}$. By Proposition 5.11, we have $l\left(S_{\varphi_{n}}\right)>l\left(S_{\varphi_{n-1}}\right)$, so by Proposition 5.9 we have $l\left(S_{\varphi_{n}}\right) \geqslant l\left(R_{n}\right)$ with equality only if we also have $\varphi_{n}>\varphi_{n-1}$. Because equality does indeed hold, we must have $\varphi_{n}>\varphi_{n-1}>\cdots>\varphi_{2}$, so $\varphi_{n}=n$.

Case 1b: We have $l\left(R_{n-1}\right)>\cdots>l\left(R_{1}\right), R_{t} \prec R_{n}$ for $2 \leqslant t \leqslant n-2$, and $l\left(R_{n}\right)<l\left(R_{n-1}\right)$. As in Case 1a, by Proposition 5.11, we have $l\left(S_{\varphi_{2}}\right)>l\left(S_{1}\right)$, so by Proposition 5.9 we have $l\left(S_{\varphi_{2}}\right) \geqslant l\left(R_{2}\right)$. However, we must now be careful because we need not have $l\left(S_{\varphi_{n-1}}\right)>\cdots>l\left(S_{\varphi_{2}}\right)$, so we take a slightly different approach. Let $k \in\left\{\varphi_{t}: 2 \leqslant t \leqslant n-1\right\}$ be such that $l\left(S_{k}\right)$ is maximal. By Proposition 5.13, we have $r\left(S_{k}\right) \geqslant r\left(R_{n-1}\right)$ with equality only if $k=n-1$. If $R_{n-1} \nprec R_{n}$, then we must have $k=\varphi_{n-1}$ because $S_{\varphi_{t}} \prec S_{\varphi_{n}}$ for every $2 \leqslant t \leqslant n-1$ except for S_{k}. Now by Proposition 5.9, we have $l\left(S_{\varphi_{n}}\right) \geqslant l\left(R_{n}\right)$ with equality only if $\varphi_{n}>\varphi_{n-1}=k=n-1$. Because equality does indeed hold, we must have $\varphi_{n}=n$. On the other hand, if $R_{n-1} \prec R_{n}$, then $S_{k} \prec S_{\varphi_{n}}$ and by Corollary 3.13, Part 3, we have $r\left(S_{\varphi_{n}}\right) \geqslant r\left(S_{k}\right)-1 \geqslant r\left(R_{n-1}\right)-1=r\left(R_{n}\right)$ with equality only if $\varphi_{n}>k=n-1$. Because equality does indeed hold, we must have $\varphi_{n}=n$.

Case 1c: We have $l\left(R_{2}\right)<l\left(R_{1}\right), l\left(R_{n}\right)>\cdots>l\left(R_{2}\right)$, and $R_{t} \prec R_{1}$ for $3 \leqslant t \leqslant n-1$. By rotating, the conclusion follows from Case 1b.

We now assume that $R_{1} \npreceq R_{i}$ for some minimal $i \geqslant 3$ or $R_{n} \npreceq R_{j}$ for some maximal $j \leqslant n-2$. By rotating, we may assume that $R_{1} \npreceq R_{i}$ for some minimal $i \geqslant 3$. Note that by Corollary 3.13, Part 3, we cannot have $R_{1} \prec R_{n}$, so we have $i \leqslant n-1$. It remains to consider the cases where $i=n-1$ and where $i \leqslant n-2$.

Case 2: We have $R_{1} \precsim R_{i}$ for some minimal $i \geqslant 3$, and in fact $i=n-1$.
Case 2a: We have $l\left(R_{i-1}\right)<\cdots<l\left(R_{1}\right)$ and $l\left(R_{i}\right)>l\left(R_{i-1}\right)$. By Proposition 5.9, we have $l\left(S_{\varphi_{i-1}}\right) \geqslant l\left(R_{i-1}\right)$ with equality only if $\varphi_{i-1}>\cdots>\varphi_{2}$. If $l\left(S_{\varphi_{i}}\right)>l\left(S_{\varphi_{i-1}}\right)$, then by Proposition 5.9 again, we have $l\left(S_{\varphi_{n}}\right) \geqslant l\left(R_{n}\right)$ with equality only if $\varphi_{n}>\varphi_{i}>\varphi_{i-1}>\cdots>\varphi_{2}$. Because equality does indeed hold, we must have $\varphi_{n}=n$.

Now suppose that $l\left(S_{\varphi_{i}}\right) \leqslant l\left(S_{\varphi_{i-1}}\right)$. We will show that this is narrowly possible, but $\boldsymbol{\mu}$ will be so specifically determined that we will be able to reduce to the previous case. By Corollary 3.13, Part 3, we have $M_{i-1, i}(\boldsymbol{\lambda})<\min \left\{\left|R_{i-1}\right|,\left|R_{i}\right|\right\}$, so we must have $r\left(S_{\varphi_{i}}\right)<r\left(S_{\varphi_{i-1}}\right)$. Again, by Corollary 3.13, Part 3 , we have $M_{t, t+1}(\boldsymbol{\lambda})>0$ for $1 \leqslant t \leqslant i-2$, and therefore $M_{\varphi_{t}, \varphi_{t+1}}(\boldsymbol{\mu})>0$ and the rows $S_{1}, S_{\varphi_{2}}, \ldots, S_{\varphi_{i-1}}$ must overlap; to be precise, $S_{1} \cup \cdots \cup S_{\varphi_{i-1}}$ must be a row. Now because $r\left(S_{1}\right)<r\left(S_{\varphi_{n}}\right)$ and $M_{\varphi_{t}, \varphi_{n}}(\boldsymbol{\mu})=0$ for $2 \leqslant t \leqslant i-1$, we must have $r\left(S_{\varphi_{i-1}}\right)<l\left(S_{\varphi_{n}}\right)$. Because $S_{1} \prec S_{\varphi_{i}}$, we now have

$$
\begin{equation*}
r\left(S_{1}\right) \leqslant r\left(S_{\varphi_{i}}\right)+1 \leqslant r\left(S_{\varphi_{i-1}}\right) \leqslant l\left(S_{\varphi_{n}}\right)-1 \leqslant r\left(S_{1}\right) \tag{5.12}
\end{equation*}
$$

so we have equality everywhere and in particular, $M_{1, i-1}(\boldsymbol{\lambda})=\min \left\{\left|R_{1}\right|,\left|R_{i-1}\right|\right\}>0$. Because $M_{1, t}(\boldsymbol{\lambda})=0$ for $3 \leqslant t \leqslant i-1$ by Proposition 5.6, Part 1 , this means that in fact $i=3$. Now by (5.12), we have $M_{1,4}(\boldsymbol{\lambda})=M_{3,4}(\boldsymbol{\lambda})=0$, so $r\left(R_{1}\right)=r\left(R_{3}\right)=l\left(R_{4}\right)-1$ by Corollary 3.13, Part 3, and $l\left(R_{3}\right)<l\left(R_{1}\right)$ because $R_{1} \nprec R_{3}$. Because $M_{1,2}(\boldsymbol{\lambda})=\min \left\{\left|R_{1}\right|,\left|R_{2}\right|\right\}$, we either have $R_{1} \prec R_{2}$ or $R_{2} \prec R_{1}$, but because $l\left(R_{2}\right)<l\left(R_{3}\right)<l\left(R_{1}\right)$, we cannot have $R_{2} \prec R_{1}$ by Proposition 5.2, Part 2, so $R_{1} \prec R_{2}$ and $r\left(R_{2}\right)=r\left(R_{1}\right)-1$ by Corollary 3.13, Part 3. But now $\left|R_{3}\right|-1=M_{2,3}(\boldsymbol{\lambda})=M_{\varphi_{2}, \varphi_{3}}(\boldsymbol{\mu})=\left|S_{\varphi_{2}}\right|-1=\left|R_{2}\right|-1$, so $\left|R_{2}\right|=\left|R_{3}\right|$. Moreover, we have $R_{1} \prec R_{2}, R_{1} \prec R_{3}$, and $M_{2,4}(\boldsymbol{\lambda})=M_{3,4}(\boldsymbol{\lambda})=0$ so in fact these two vertices are equivalent in $\Pi(\boldsymbol{\lambda})$, and we can swap the roles of these two vertices to reduce to the case where $l\left(S_{\varphi_{i}}\right)>l\left(S_{\varphi_{i-1}}\right)$. This possibility is illustrated below. It is barely possible to
have $l\left(S_{\varphi_{3}}\right) \leqslant l\left(S_{\varphi_{2}}\right)$, but this requires $S_{\varphi_{2}}$ and $S_{\varphi_{3}}$ to play equivalent roles in $\Pi(\boldsymbol{\mu})$, so by instead considering the identity isomorphism $\tilde{\varphi}: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$, we can reduce to the previous case.

Case 2b: We have $l\left(R_{i-1}\right)>\cdots>l\left(R_{1}\right), R_{t} \prec R_{n}$ for $2 \leqslant t \leqslant i-1$, and $l\left(R_{i}\right)<l\left(R_{i-1}\right)$. Let $k \in\left\{\varphi_{t}: 2 \leqslant t \leqslant i-1\right\}$ be such that $l\left(S_{k}\right)$ is maximal. By Proposition 5.13, we have $r\left(S_{k}\right) \geqslant r\left(R_{i-1}\right)$ with equality only if $k=i-1$. If $R_{i-1} \nprec R_{i}$, then we must have $k=\varphi_{i-1}$ because $S_{\varphi_{t}} \prec S_{\varphi_{i}}$ for every $2 \leqslant t \leqslant i-1$ except for S_{k}. Now by Proposition 5.9, we have $l\left(S_{\varphi_{n}}\right) \geqslant l\left(R_{n}\right)$ with equality only if $\varphi_{n}>\varphi_{i}>\varphi_{i-1}=k=i-1$. Because equality does indeed hold, we must have $\varphi_{n}=n$. On the other hand, if $R_{i-1} \prec R_{i}$, then $S_{k} \prec S_{\varphi_{i}}$, and by Corollary 3.13, Part 3 , we have $r\left(S_{\varphi_{i}}\right) \geqslant r\left(S_{k}\right)-1 \geqslant r\left(R_{i-1}\right)-1=r\left(R_{i}\right)$ with equality only if $\varphi_{i}>k=i-1$. Then by Proposition 5.9 again, we have $l\left(S_{\varphi_{n}}\right) \geqslant l\left(R_{n}\right)$ with equality only if $\varphi_{n}>\varphi_{i}$. Because equality does indeed hold, we must have $\varphi_{n}=n$.

Case 2c: We have $n=4, l\left(R_{2}\right)>l\left(R_{1}\right), l\left(R_{3}\right)<l\left(R_{2}\right)$, and $R_{4} \not r_{2}$. By Proposition 5.11, we have $l\left(S_{\varphi_{2}}\right)>l\left(S_{1}\right)$ and $l\left(S_{\varphi_{4}}\right)>l\left(S_{\varphi_{3}}\right)$, so by Proposition 5.9, we have $l\left(S_{\varphi_{4}}\right) \geqslant l\left(R_{4}\right)$ with equality only if $\varphi_{4}>\varphi_{3}>\varphi_{2}$. Because equality does indeed hold, we must have $\varphi_{4}=4$.

Case 3: We have $R_{1} \precsim R_{i}$ for some minimal $3 \leqslant i \leqslant n-2$. We first show that $l\left(S_{\varphi_{i}}\right) \geqslant l\left(R_{i}\right)$ with equality only if $\varphi_{i}>\varphi_{t}$ for all $t<i$. If $i=j=3, l\left(R_{2}\right)>l\left(R_{1}\right), R_{n} \precsim R_{2}$, and $l\left(R_{3}\right)<l\left(R_{2}\right)$, then we have $l\left(S_{\varphi_{2}}\right)>l\left(S_{1}\right)$ by Proposition 5.11 and the result follows as before from Proposition 5.9. Now suppose that $l\left(R_{i-1}\right)<\cdots<l\left(R_{1}\right)$ and $l\left(R_{i}\right)>l\left(R_{i-1}\right)$. We show that $l\left(S_{\varphi_{i}}\right)>l\left(S_{\varphi_{i-1}}\right)$. Suppose that $l\left(S_{\varphi_{i}}\right) \leqslant l\left(S_{\varphi_{i-1}}\right)$. By Corollary 3.13, Part 3, we have $M_{i-1, i}(\boldsymbol{\lambda})<\min \left\{\left|R_{i-1}\right|,\left|R_{i}\right|\right\}$, so we must have $r\left(S_{\varphi_{n}}\right) \leqslant r\left(S_{\varphi_{i}}\right)+1 \leqslant r\left(S_{\varphi_{i-1}}\right)$. Because $M_{t, n}(\boldsymbol{\lambda})=0$ for $2 \leqslant t \leqslant i-1$ and $M_{t, t+1}(\boldsymbol{\lambda})>0$ for $1 \leqslant t \leqslant i-2$ by Corollary 3.13, Part 3, we must have $r\left(S_{\varphi_{i-1}}\right)<l\left(S_{\varphi_{n}}\right) \leqslant r\left(S_{\varphi_{n}}\right)$, a contradiction, so indeed $l\left(S_{\varphi_{i}}\right)>l\left(S_{\varphi_{i-1}}\right)$. Now by Proposition 5.9, we have $l\left(S_{\varphi_{i}}\right) \geqslant l\left(R_{i}\right)$ with equality only if $\varphi_{i}>\varphi_{t}$ for all $t<i$. Because either $j=i$, or $j=i+1$ and $l\left(R_{j}\right)<l\left(R_{i}\right)$, we in fact have $l\left(S_{\varphi_{j}}\right) \geqslant l\left(R_{j}\right)$ with equality only if $\varphi_{j}>\varphi_{t}$ for all $t<j$. Finally, by rotating and repeating the previous argument, we have $l\left(S_{\varphi_{n}}\right) \geqslant l\left(R_{n}\right)$ with equality only if $\varphi_{n}>\varphi_{t}$ for all $t<n$. Because equality does indeed hold, we must have $\varphi_{n}=n$. This completes the proof.

The payoff of all our work so far is the following Corollary.
Corollary 5.19. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip with $l\left(R_{i}\right)<l\left(R_{i+1}\right)$ and $R_{i} \leftrightarrow R_{i+1}$. Let $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ and $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$ be such that $S_{\varphi_{i}} \leftrightarrow S_{\varphi_{i+1}}$. Then there exists a good substitute for $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.

Proof. By cycling and rotating, we may assume without loss of generality that $i=1$, $l\left(S_{\varphi_{1}}\right)<l\left(S_{\varphi_{2}}\right)$, and $\varphi_{1}=1$. Let $j=\varphi_{2}$. By applying Lemma 5.5 to $\boldsymbol{\mu}$, either we may replace $\boldsymbol{\mu}$ by a similar horizontal-strip to assume that $j=2$, in which case we have our good substitute and we are done, or there is a minimal noncommuting path ($S_{1}=S_{j_{1}}, \ldots, S_{j_{k}}=S_{j}$) in $\boldsymbol{\mu}$ from S_{1} to S_{j}. However, in this case, by considering the corresponding rows in $\boldsymbol{\lambda}$, we would have $2=\varphi_{j}^{-1}=\varphi_{j_{k}}^{-1} \geqslant k \geqslant 3$ by Lemma 5.17, a contradiction. Therefore, there is indeed a good substitute for $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.

Remark 5.20. The hypothesis that $S_{\varphi_{i}} \leftrightarrow S_{\varphi_{i+1}}$ is essential to the proof of Corollary 5.19. Note that this hypothesis is not always satisfied, as Figure 5.3 shows an example where $R_{1} \not \leftrightarrow R_{2}$, but $S_{\varphi_{1}} \leftrightarrow S_{\varphi_{2}}$. In other words, it is possible for rows not to commute in $\boldsymbol{\lambda}$ but for the corresponding rows to commute in $\boldsymbol{\mu}$.

Our next goal is to extend Corollary 5.19 by describing properties of the weighted graph $\Pi(\boldsymbol{\lambda})$ that will force certain rows not to commute.

Definition 5.21. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip. A pair of rows $\left(R_{i}, R_{j}\right)$ of $\boldsymbol{\lambda}$ with $i<j$ and $l\left(R_{i}\right)<l\left(R_{j}\right)$ is strict if either

1. $0<M_{i, j}<\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$, or
2. $M_{i, j}=0$ and $M_{i, k}+M_{j, k} \geqslant\left|R_{k}\right|+1$ for some k.

Example 5.22. The two possibilities for strictness are given below. Note that on the right, we have $M_{i, k}+M_{j, k}=2+3=\left|R_{k}\right|+1$. Informally, in the second possibility where $M_{i, j}=0$, the weighted graph normally would not know about the relationship between R_{i} and R_{j}. However, the presence of this row R_{k} glues the rows R_{i} and R_{j} together and means that the weighted graph data forces rows R_{i} and R_{j} not to commute.

Remark 5.23. Because we define strictness using the weighted graph data, it is preserved under isomorphisms. To be specific, if $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ and $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ are horizontalstrips with $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$, then if $\left(R_{i}, R_{j}\right)$ is strict, we can cycle and rotate to assume that $l\left(S_{\varphi_{i}}\right)<l\left(S_{\varphi_{j}}\right)$ and $\varphi_{i}<\varphi_{j}$, and then the pair $\left(S_{\varphi_{i}}, S_{\varphi_{j}}\right)$ is strict.

Proposition 5.24. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip and suppose that the pair of rows $\left(R_{i}, R_{j}\right)$ is strict. Then $R_{i} \leftrightarrow R_{j}$.

Proof. If $0<M_{i, j}<\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$, then $R_{i} \not \leftrightarrow R_{j}$ by Corollary 3.13, Part 1, so suppose that $M_{i, j}=0$ and $M_{i, k}+M_{j, k} \geqslant\left|R_{k}\right|+1$ for some k. Because $l\left(R_{i}\right)<l\left(R_{j}\right)$ and $M_{i, j}=0$, we have that $l\left(R_{i}\right) \geqslant r\left(R_{j}\right)+1$ and because $M_{i, k}, M_{j, k} \leqslant\left|R_{k}\right|$, we must have $M_{i, k}, M_{j, k}>0$ so $l\left(R_{k}\right) \leqslant r\left(R_{i}\right)+1 \leqslant l\left(R_{j}\right) \leqslant r\left(R_{k}\right)+1$ by Proposition 3.10, Part 1. Now we either have
$M_{i, k}=r\left(R_{i}\right)-l\left(R_{k}\right)+1+\chi(i>k)$ or $M_{i, k}=\min \left\{\left|R_{i}\right|,\left|R_{k}\right|\right\} \leqslant r\left(R_{i}\right)-l\left(R_{k}\right)+1+\chi(i>k)$ and similarly we have $M_{j, k} \leqslant r\left(R_{k}\right)-l\left(R_{j}\right)+1+\chi(k>j)$. Because $i<j$, we have $\chi(i>k)+\chi(k>j) \leqslant 1$, so

$$
\begin{equation*}
\left|R_{k}\right|+1 \leqslant M_{i, k}+M_{j, k} \leqslant\left|R_{k}\right|+r\left(R_{i}\right)-l\left(R_{j}\right)+1+\chi(i>k)+\chi(k>j) \leqslant\left|R_{k}\right|+1, \tag{5.13}
\end{equation*}
$$

so we must have equality everywhere and in particular, $r\left(R_{j}\right)-l\left(R_{i}\right)+1=0$, so $R_{i} \leftrightarrow R_{j}$.
Remark 5.25. This proof shows that if $l\left(R_{i}\right)<l\left(R_{j}\right)$ and $M_{i, j}=0$, then in fact $M_{i, k}+M_{j, k} \leqslant$ $\left|R_{k}\right|+1$ for all k, so we could replace the condition $M_{i, k}+M_{j, k} \geqslant\left|R_{k}\right|+1$ with the equivalent condition $M_{i, k}+M_{j, k}=\left|R_{k}\right|+1$.

Corollary 5.26. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip with a pair of adjacent strict rows $\left(R_{i}, R_{i+1}\right)$. Then $\boldsymbol{\lambda}$ is good.

Proof. Let $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ and $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$. By definition, we have $M_{i, i+1}(\boldsymbol{\lambda})<$ $\min \left\{\left|R_{i}\right|,\left|R_{i+1}\right|\right\}$, so $M_{\varphi_{i}, \varphi_{i+1}}(\boldsymbol{\mu})<\min \left\{\left|S_{\varphi_{i}}\right|,\left|S_{\varphi_{i+1}}\right|\right\}$ and $l\left(S_{\varphi_{i}}\right) \neq l\left(S_{\varphi_{i+1}}\right)$. Therefore, by cycling and rotating, we may assume without loss of generality that $l\left(S_{\varphi_{i}}\right)<l\left(S_{\varphi_{i+1}}\right)$ and $\varphi_{i}<\varphi_{i+1}$, so the pair $\left(S_{\varphi_{i}}, S_{\varphi_{i+1}}\right)$ is strict. By Proposition 5.24, we have $S_{\varphi_{i}} \nleftarrow S_{\varphi_{i+1}}$, so by Corollary 5.19 , there exists a good substitute for $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.

We now investigate some useful properties of strict pairs.
Proposition 5.27. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip with $i<j, l\left(R_{i}\right)<l\left(R_{j}\right)$, and $R_{i} \leftrightarrow R_{j}$. Suppose that $R_{i} \leftrightarrow R_{k}$ and $R_{j} \leftrightarrow R_{k}$ for some k with $k<i$ or $k>j$. Then the pair $\left(R_{i}, R_{j}\right)$ is strict.

Proof. By Corollary 3.13, Part 3, we cannot have $M_{i, j}=\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$, and if $0<M_{i, j}<\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$, then we are done, so suppose that $M_{i, j}=0$ and therefore $l\left(R_{j}\right)=r\left(R_{i}\right)+1$ by Corollary 3.13, Part 3. Because $R_{i} \not \leftrightarrow R_{k}$, by Proposition 3.10, Part 1 we must have $l\left(R_{k}\right) \leqslant r\left(R_{i}\right)+1=l\left(R_{j}\right)$, and because $R_{j} \leftrightarrow R_{k}$, we must have $r\left(R_{k}\right) \geqslant l\left(R_{j}\right)-1=r\left(R_{i}\right)$, so by Corollary 3.13, Part 2, we in fact have $l\left(R_{i}\right)<l\left(R_{k}\right)<l\left(R_{j}\right)$. Now by (3.6), we have

$$
\begin{equation*}
M_{i, k}+M_{j, k}=r\left(R_{i}\right)-l\left(R_{k}\right)+1+\chi(i>k)+r\left(R_{k}\right)-l\left(R_{j}\right)+1+\chi(k>j)=\left|R_{k}\right|+1, \tag{5.14}
\end{equation*}
$$

so the pair $\left(R_{i}, R_{j}\right)$ is strict.
Proposition 5.28. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a minimal noncommuting path and suppose that the pairs $\left(R_{t^{\prime}}, R_{t^{\prime}+1}\right)$ are not strict for $1 \leqslant t^{\prime}<n-1$. Then we have the following.

1. If $l\left(R_{t+1}\right)>l\left(R_{t}\right)$, then $M_{t, t+1}=0$ and $l\left(R_{t+1}\right)=r\left(R_{t}\right)+1$.
2. If $l\left(R_{t+1}\right)>l\left(R_{t}\right)$ and $l\left(R_{t}\right)<l\left(R_{t-1}\right)$, then $R_{t+1} \npreceq R_{t-1}$.
3. If $l\left(R_{t+1}\right)<l\left(R_{t}\right)$ and $l\left(R_{t}\right)>l\left(R_{t-1}\right)$, then $R_{t-1} \nprec R_{t+1}$.

Proof.

1. By Corollary 3.13, Part 3 we cannot have $M_{t, t+1}=\min \left\{\left|R_{t}\right|,\left|R_{t+1}\right|\right\}$, and if $0<M_{t, t+1}<$ $\min \left\{\left|R_{t}\right|,\left|R_{t+1}\right|\right\}$, then the pair $\left(R_{t}, R_{t+1}\right)$ would be strict, so we must have $M_{t, t+1}=0$ and $l\left(R_{t+1}\right)=r\left(R_{t}\right)+1$.
2. By the previous part, we must have $M_{t, t+1}=0$. By Proposition 5.6, Part 2, we must have $R_{t-1} \prec R_{t+1}$ or $R_{t+1} \prec R_{t-1}$. However, if $R_{t-1} \prec R_{t+1}$, then because $M_{t-1, t}>0$ by Corollary 3.13, Part 3, we would have $M_{t-1, t}+M_{t-1, t+1} \geqslant\left|R_{t-1}\right|+1$ and the pair (R_{t}, R_{t+1}) would be strict, so we must have $R_{t+1} \precsim R_{t-1}$.
3. By rotating, this follows from the previous part.

Example 5.29. The diagrams below illustrate the contradictions that we deduce in the proofs of Parts 2 and 3 of Proposition 5.28. If $R_{t-1} \prec R_{t+1}$ as on the left, then the pair (R_{t}, R_{t+1}) would be strict, so we concluded that $R_{t+1} \precsim R_{t-1}$. If $R_{t+1} \prec R_{t-1}$ as on the right, then the pair (R_{t-1}, R_{t}) would be strict, so we concluded that $R_{t-1} \preccurlyeq R_{t+1}$.

It will also be convenient to make the following definition.
Definition 5.30. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip. A strict sequence of $\boldsymbol{\lambda}$ is a sequence of rows $\left(R_{j_{1}}, \ldots, R_{j_{k}}\right)$ such that $k \geqslant 2, j_{1}<\cdots<j_{k}, M_{j_{t}, j_{t^{\prime}}}=0$ for every $1 \leqslant t<t^{\prime} \leqslant k$, and there is some h with $h<j_{1}$ or $h>j_{k}$ for which

$$
\begin{equation*}
M_{j_{t}, h}>0 \text { for all } 1 \leqslant t \leqslant k \text { and } M_{j_{1}, h}+\cdots+M_{j_{k}, h} \geqslant\left|R_{h}\right|+1 . \tag{5.15}
\end{equation*}
$$

Note that if a pair of rows $\left(R_{i}, R_{j}\right)$ is a strict sequence, then it meets the second condition of being a strict pair.

Example 5.31. In Figure 5.4, we have $M_{t, t^{\prime}}=0$ for every $1 \leqslant t<t^{\prime} \leqslant 6, M_{t, 7}>0$ for $1 \leqslant t \leqslant 6$, and $M_{1,7}+\cdots+M_{6,7}=2+5+2+4+3+3=19=\left|R_{7}\right|+1$, so (R_{1}, \ldots, R_{6}) is a strict sequence. Informally, our next Proposition will show that every strict sequence looks very much like this example. Because $M_{t, t^{\prime}}=0$ for $1 \leqslant t<t^{\prime} \leqslant 6$, the weighted graph normally would not know about the relationship between these rows. However, the presence of the row R_{7} glues these rows together and means that the weighted graph data forces the adjacent rows not to commute.

Remark 5.32. Because we define a strict sequence using the weighted graph data, it is preserved under isomorphisms. To be specific, if $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ and $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ are horizontalstrips with $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$, then if $\left(R_{j_{1}}, \ldots, R_{j_{k}}\right)$ is a strict sequence, we can cycle to

Figure 5.4: An example of a strict sequence.
assume that $\varphi_{h}>\varphi_{j_{t}}$ for every $1 \leqslant t \leqslant k$. Because $M_{j_{t}, j_{t^{\prime}}}(\boldsymbol{\lambda})=0$ for $1 \leqslant t<t^{\prime} \leqslant k$, the integers $l\left(S_{\varphi_{j_{t}}}\right)$ for $1 \leqslant t \leqslant k$ must be distinct, so we can let $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ be the permutation that sorts them in increasing order, in other words

$$
\begin{equation*}
l\left(S_{\varphi_{j_{\sigma_{1}}}}\right)<l\left(S_{\varphi_{j_{2}}}\right)<\cdots<l\left(S_{\varphi_{j_{\sigma_{k}}}}\right) \tag{5.16}
\end{equation*}
$$

Then the sequence $\left(S_{\varphi_{j_{\sigma_{1}}}}, \ldots, S_{\varphi_{j_{\sigma_{k}}}}\right)$ is strict.
Proposition 5.33. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip with a sequence of rows of the form $\left(R_{j_{1}}, \ldots, R_{j_{k}}\right)$ with $k \geqslant 2, j_{1}<\cdots<j_{k}, M_{j_{t}, j_{t^{\prime}}}=0$ for every $1 \leqslant t<t^{\prime} \leqslant k$, and there is some h with $h<j_{1}$ or $h>j_{k}$ for which $M_{j_{t}, h}>0$ for every $1 \leqslant t \leqslant k$. Then this sequence is strict if and only if $l\left(R_{j_{t+1}}\right)=r\left(R_{j_{t}}\right)+1$ for every $1 \leqslant t \leqslant k-1$ and

$$
\begin{equation*}
l\left(R_{j_{1}}\right)+\chi\left(j_{1}>h\right) \leqslant l\left(R_{h}\right) \leqslant r\left(R_{h}\right)+\chi\left(h>j_{k}\right) \leqslant r\left(R_{j_{k}}\right) . \tag{5.17}
\end{equation*}
$$

Proof. By Proposition 3.10 Part 2, because all of the $M_{j_{t}, j_{t^{\prime}}}$ are zero, the integers $l\left(R_{j_{t}}\right)$ for $1 \leqslant t \leqslant k$ are distinct, so let $\sigma:\{1, \ldots, k\} \rightarrow\left\{j_{1}, \ldots, j_{k}\right\}$ sort the rows $R_{j_{t}}$ so that $l\left(R_{j_{t}}\right)$ is increasing. Then because the $M_{j_{t}, j_{t^{\prime}}}$ are zero we have

$$
\begin{equation*}
l\left(R_{\sigma_{1}}\right)<r\left(R_{\sigma_{1}}\right)+1+\chi\left(\sigma_{1}>\sigma_{2}\right) \leqslant l\left(R_{\sigma_{2}}\right)<r\left(R_{\sigma_{2}}\right)+1+\chi\left(\sigma_{2}>\sigma_{3}\right) \leqslant \cdots \leqslant l\left(R_{\sigma_{k}}\right) . \tag{5.18}
\end{equation*}
$$

Because $M_{\sigma_{1}, h}>0$, we must have $l\left(R_{h}\right) \leqslant r\left(R_{\sigma_{1}}\right)+1 \leqslant l\left(R_{\sigma_{2}}\right)$ and because $M_{\sigma_{k}, h}>0$, we must have $r\left(R_{h}\right) \geqslant l\left(R_{\sigma_{k}}\right)-1 \geqslant r\left(R_{\sigma_{k-1}}\right)$. We now have that

$$
\begin{align*}
M_{\sigma_{1}, h} & \leqslant r\left(R_{\sigma_{1}}\right)-l\left(R_{h}\right)+1+\chi\left(\sigma_{1}>h\right) \leqslant l\left(R_{\sigma_{2}}\right)-l\left(R_{h}\right)+\chi\left(\sigma_{1}>h\right)-\chi\left(\sigma_{1}>\sigma_{2}\right) \tag{5.19}\\
M_{\sigma_{2}, h} & =\left|R_{\sigma_{2}}\right|=r\left(R_{\sigma_{2}}\right)-l\left(R_{\sigma_{2}}\right)+1 \leqslant l\left(R_{\sigma_{3}}\right)-l\left(R_{\sigma_{2}}\right)-\chi\left(\sigma_{2}>\sigma_{3}\right) \\
\cdots & = \\
M_{\sigma_{k-1}, h} & =\left|R_{\sigma_{k-1}}\right|=r\left(R_{\sigma_{k-1}}\right)-l\left(R_{\sigma_{k-1}}\right)+1 \leqslant l\left(R_{\sigma_{k}}\right)-l\left(R_{\sigma_{k-1}}\right)-\chi\left(\sigma_{k-1}>\sigma_{k}\right) \\
M_{\sigma_{k}, h} & \leqslant r\left(R_{h}\right)-l\left(R_{\sigma_{k}}\right)+1+\chi\left(h>\sigma_{k}\right) .
\end{align*}
$$

Also note that $\chi\left(\sigma_{1}>h\right)-\chi\left(\sigma_{1}>\sigma_{2}\right)-\cdots-\chi\left(\sigma_{k-1}>\sigma_{k}\right)+\chi\left(h>\sigma_{k}\right) \leqslant 1$ with equality only if $\sigma_{1}<\cdots<\sigma_{k}$. Therefore, by summing the above equations, we have

$$
\begin{equation*}
\sum_{t=1}^{k} M_{\sigma_{t}, h} \leqslant r\left(R_{h}\right)-l\left(R_{h}\right)+1+1=\left|R_{h}\right|+1, \tag{5.20}
\end{equation*}
$$

so the sequence is strict if and only if we have equality everywhere, meaning that $\sigma_{1}<\cdots<\sigma_{k}$, $l\left(R_{j_{t+1}}\right)=r\left(R_{j_{t}}\right)+1$ for $1 \leqslant t \leqslant k-1$, and (5.17) holds.

Remark 5.34. This proof shows that if $l\left(R_{j_{1}}\right)<\cdots<l\left(R_{j_{k}}\right)$ and the $M_{j_{t}, j_{t^{\prime}}}=0$, then in fact $M_{j_{1}, h}+\cdots+M_{j_{k}, h} \leqslant\left|R_{h}\right|+1$ for all h, so we could replace the condition $M_{j_{1}, h}+\cdots+M_{j_{k}, h} \geqslant\left|R_{h}\right|+1$ with the equivalent condition $M_{j_{1}, h}+\cdots+M_{j_{k}, h}=\left|R_{h}\right|+1$.

Proposition 5.35. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip with a strict sequence of rows $\left(R_{j_{1}}, \ldots, R_{j_{k}}\right)$. Suppose that there is some $j_{t}<x<j_{t+1}$ with $l\left(R_{x}\right)=l\left(R_{j_{t+1}}\right)$ and $R_{j_{t+1}} \precsim R_{x}$. Then one of the following holds.

1. The sequence $\left(R_{j_{1}}, \ldots, R_{j_{t}}, R_{x}\right)$ is strict.
2. There is a shorter strict sequence of the form $\left(R_{j_{1}}, \ldots, R_{j_{t}}, R_{x}, R_{j_{t^{\prime}+1}}, \ldots, R_{j_{k}}\right)$ for some $t^{\prime} \geqslant t+2$.
3. There is a strict pair $\left(R_{x}, R_{j_{t^{\prime}+1}}\right)$ for some $t^{\prime} \geqslant t+1$.

Example 5.36. Informally, Proposition 5.35 describes a situation like the one in Figure 5.5. The sequence $\left(R_{j_{1}}, \ldots, R_{j_{6}}\right)$ is the strict sequence from Example 5.31. The rows $R_{x_{1}}, R_{x_{2}}$, and $R_{x_{3}}$ illustrate the three possibilities described in Proposition 5.35. Informally, because $R_{x_{1}}$ extends past $R_{j_{t}}$, the sequence ($R_{j_{1}}, R_{j_{2}}, R_{x_{1}}$) is strict. Because $R_{x_{2}}=R_{j_{3}} \cup R_{j_{4}} \cup R_{j_{5}}$, it can replace these rows to produce the shorter strict sequence ($R_{j_{1}}, R_{j_{2}}, R_{x_{2}}, R_{j_{6}}$). Finally, because $R_{x_{3}}$ ends between the rows $R_{j_{4}}$ and $R_{j_{5}}$, it results in the strict pair ($R_{x_{3}}, R_{j_{5}}$).

Proof of Proposition 5.35. By the definition of a strict sequence, there is some h with $h<j_{1}$ or $h>j_{k}$ for which $M_{j_{t}, h}>0$ for all $1 \leqslant t \leqslant k$ and $\sum_{t=1}^{k} M_{j_{t}, h} \geqslant\left|R_{h}\right|+1$, and by cycling we may assume without loss of generality that $h>j_{k}$, so that $l\left(R_{j_{1}}\right) \leqslant l\left(R_{h}\right)<r\left(R_{h}\right)+1 \leqslant r\left(R_{j_{k}}\right)$ by (5.17). Noting that $R_{j_{t+1}} \precsim R_{x}$, let $t+1 \leqslant t^{\prime} \leqslant k$ be maximal such that $R_{j_{t^{\prime}}} \prec R_{x}$. If $t^{\prime}=k$, then we must have $r\left(R_{x}\right) \geqslant r\left(R_{j_{k}}\right) \geqslant r\left(R_{h}\right)+1$ by Proposition 5.2 and now the sequence $\left(R_{j_{1}}, \ldots, R_{j_{t}}, R_{x}\right)$ is strict by Proposition 5.33 , so the first possibility holds and we may now assume that $t^{\prime} \leqslant k-1$. By maximality of t^{\prime}, we have that $R_{j_{t^{\prime}+1}} \nprec R_{x}$. If $M_{x, j_{t^{\prime}+1}}=0$, then we must have $r\left(R_{x}\right)=r\left(R_{j_{t^{\prime}}}\right)=l\left(R_{j_{t^{\prime}+1}}\right)-1$ and the sequence $\left(R_{j_{1}}, \ldots, R_{j_{t}}, R_{x}, R_{j_{t^{\prime}+1}}, \ldots, R_{j_{k}}\right)$ is strict by Proposition 5.33. Also note that because $R_{x} \nprec R_{j_{t+1}}$, we must have $t^{\prime}>t+1$ so this strict sequence is indeed shorter and the second possibility holds. Finally, if $M_{x, j_{t^{\prime}+1}}>0$, then because $l\left(R_{x}\right)=l\left(R_{j_{t+1}}\right)<l\left(R_{j_{t^{\prime}+1}}\right)$, we have $R_{x} \nprec R_{j_{t^{\prime}+1}}$, and by maximality of t we have $R_{j_{t^{\prime}+1}} \nprec R_{x}$, so $0<M_{x, j_{t^{\prime}+1}}<\min \left\{\left|R_{x}\right|,\left|R_{j_{t^{\prime}+1}}\right|\right\}$, the pair $\left(R_{x}, R_{j_{t^{\prime}+1}}\right)$ is strict, and the third possibility holds.

We now describe the structure of a minimal noncommuting path with no strict pairs.

Figure 5.5: A strict sequence with a row R_{x} as in Proposition 5.35.

Proposition 5.37. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a minimal noncommuting path with $l\left(R_{1}\right)<l\left(R_{n}\right)$ and $R_{1} \not \leftrightarrow R_{n}$ and suppose that the pairs $\left(R_{t}, R_{t+1}\right)$ are not strict for $1 \leqslant t \leqslant n-1$. Then one of the following holds.

1. One of the sequences $\left(R_{1}, \ldots, R_{n-1}\right),\left(R_{2}, \ldots, R_{n-1}\right)$, or $\left(R_{2}, \ldots, R_{n}\right)$ is strict.
2. We have $n=4, l\left(R_{2}\right)=l\left(R_{4}\right)=r\left(R_{1}\right)-1=r\left(R_{3}\right)-1, R_{4} \precsim R_{2}$, and $R_{1} \precsim R_{3}$.

Example 5.38. Informally, Proposition 5.37 tells us that a minimal noncommuting path with no strict pairs (other than possibly $\left(R_{1}, R_{n}\right)$) must look like one of the examples below.

Proof of Proposition 5.37. We consider several cases.
Case 0: We have $n=3$. In this case, we have $R_{1} \nleftarrow R_{2}$ and $R_{2} \leftrightarrow R_{3}$. Because $l\left(R_{1}\right)<l\left(R_{3}\right)$, we must have either $l\left(R_{1}\right)<l\left(R_{2}\right)$, in which case the pair (R_{1}, R_{2}) is strict by Proposition 5.27, or $l\left(R_{2}\right)<l\left(R_{3}\right)$, in which case the pair $\left(R_{2}, R_{3}\right)$ is strict by Proposition 5.27, a contradiction.

We may now assume that $n \geqslant 4$, so it remains to consider the several possibilities outlined in Lemma 5.15.

Case 1: There is no $i \geqslant 3$ for which $R_{1} \nprec R_{i}$ and there is no $j \leqslant n-2$ for which $R_{n} \precsim R_{j}$.
Case 1a: We have $l\left(R_{2}\right)>l\left(R_{1}\right), l\left(R_{n-1}\right)<\cdots<l\left(R_{2}\right)$, and $l\left(R_{n}\right)>l\left(R_{n-1}\right)$. Because $l\left(R_{2}\right)>l\left(R_{1}\right)$ and $l\left(R_{3}\right)<l\left(R_{2}\right)$, we have $R_{1} \npreceq R_{3}$ by Proposition 5.28, contradicting our hypothesis.

Case 1b: We have $l\left(R_{n-1}\right)>\cdots>l\left(R_{1}\right), R_{t} \prec R_{n}$ for $2 \leqslant t \leqslant n-2$, and $l\left(R_{n}\right)<l\left(R_{n-1}\right)$. By Proposition 5.28, we must have $l\left(R_{t+1}\right)=r\left(R_{t}\right)+1$ for $1 \leqslant t \leqslant n-2$. Now by Proposition 5.33, if $M_{1, n}>0$ then the sequence $\left(R_{1}, \ldots, R_{n-1}\right)$ is strict and if $M_{1, n}=0$ then the sequence (R_{2}, \ldots, R_{n-1}) is strict, so the first possibility holds.

Case 1c: We have $l\left(R_{2}\right)<l\left(R_{1}\right), l\left(R_{n}\right)>\cdots>l\left(R_{2}\right)$, and $R_{t} \prec R_{1}$ for $3 \leqslant t \leqslant n-1$. By rotating, the conclusion follows from Case 1b.

We now assume that $R_{1} \npreceq R_{i}$ for some minimal $i \geqslant 3$ or $R_{n} \npreceq R_{j}$ for some maximal $j \leqslant n-2$. By rotating, we may assume that $R_{1} \npreceq R_{i}$ for some minimal $i \geqslant 3$. Note that by Corollary 3.13, Part 3, we cannot have $R_{1} \prec R_{n}$, so we have $i \leqslant n-1$. It remains to consider the cases where $i=n-1$ and where $i \leqslant n-2$.

Case 2: We have $R_{1} \precsim R_{i}$ for some minimal $i \geqslant 3$, and in fact $i=n-1$.
Case 2a: We have $l\left(R_{i-1}\right)<\cdots<l\left(R_{1}\right)$ and $l\left(R_{i}\right)>l\left(R_{i-1}\right)$. By Proposition 5.7, Part 2, we have $R_{i-2} \prec R_{i}$, but because $l\left(R_{i-1}\right)<l\left(R_{i-2}\right)$ and $l\left(R_{i}\right)>l\left(R_{i-1}\right)$, we have $R_{i} \nprec R_{i-2}$ by Proposition 5.28, a contradiction.

Case 2b: We have $l\left(R_{i-1}\right)>\cdots>l\left(R_{1}\right), R_{t} \prec R_{n}$ for $2 \leqslant t \leqslant i-1$, and $l\left(R_{i}\right)<l\left(R_{i-1}\right)$. Because $l\left(R_{i}\right)<l\left(R_{i-1}\right)$ and $l\left(R_{n}\right)>l\left(R_{i}\right)$, by Proposition 5.28, Part 2 we have $R_{n} \nprec R_{i-1}$, contradicting our hypothesis.

Case 2c: We have $n=4, l\left(R_{2}\right)>l\left(R_{1}\right), l\left(R_{3}\right)<l\left(R_{2}\right)$, and $R_{4} \precsim R_{2}$. By Proposition 5.2, Proposition 3.10, and Proposition 5.28, Part 1, we must have $r\left(R_{1}\right)+1=l\left(R_{2}\right) \leqslant l\left(R_{4}\right) \leqslant$ $r\left(R_{1}\right)+1$, so $l\left(R_{2}\right)=l\left(R_{4}\right)$, and we must have $l\left(R_{4}\right)-1=r\left(R_{3}\right) \geqslant r\left(R_{1}\right)=l\left(R_{2}\right)-1=$ $l\left(R_{4}\right)-1$, so $r\left(R_{3}\right)=r\left(R_{1}\right)$. In particular, we have $M_{1, n}=0$. By Proposition 5.28, Parts 2 and 3, we must have $R_{4} \precsim R_{2}$ and $R_{1} \precsim R_{3}$ and the second possibility holds.

Case 3: We have $R_{i} \npreceq R_{i}$ for some minimal $3 \leqslant i \leqslant n-2$. If $l\left(R_{i-1}\right)<l\left(R_{i-2}\right)$ and $l\left(R_{i}\right)>l\left(R_{i-1}\right)$, then by Proposition 5.7, Part 2, we have $R_{i-2} \prec R_{i}$, but by Proposition 5.28, Part 2 we have $R_{i} \npreceq R_{i-2}$, a contradiction. Therefore, by Lemma 5.15, we must have $i=j=3, l\left(R_{2}\right)>l\left(R_{1}\right), R_{n} \precsim R_{2}$, and $l\left(R_{3}\right)<l\left(R_{2}\right)$. Similarly, by rotating, we must have $i=j=n-2$, so $n=5, l\left(R_{5}\right)>l\left(R_{4}\right), R_{1} \npreceq R_{4}$, and $l\left(R_{4}\right)<l\left(R_{3}\right)$. However, by Proposition 5.7, Parts 1 and 2, we have $R_{2} \prec R_{4}$ and $R_{4} \prec R_{2}$, which is impossible because $n \geqslant 5$.

We now describe another operation that we can perform on a horizontal-strip while preserving similarity. We can think of it as a local rotation.

Lemma 5.39. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ and suppose that $l\left(R_{i}\right)=r\left(R_{i-1}\right)+1$ for some $2 \leqslant i \leqslant n$. Assume that $\boldsymbol{\lambda}$ satisfies the inductive hypothesis (3.16) in Lemma 3.23. Let $I=\{1, \ldots, i-2, i+1$, $\ldots, n\}$ and define the four disjoint subsets of I

$$
\begin{aligned}
A & =\left\{t \in I: M_{i-1, t}=M_{i, t}=0\right\}, \\
B & =\left\{t \in I: R_{i-1} \prec R_{t}, R_{i} \prec R_{t}\right\}, \\
C_{i-1} & =\left\{t \in I: R_{t} \prec R_{i-1}, M_{i, t}=0, M_{a, t}=0 \text { for all } a \in A, R_{t} \prec R_{b} \text { for all } b \in B\right\}, \\
C_{i} & =\left\{t \in I: R_{t} \prec R_{i}, M_{i-1, t}=0, M_{a, t}=0 \text { for all } a \in A, R_{t} \prec R_{b} \text { for all } b \in B\right\} .
\end{aligned}
$$

Let $C=C_{i-1} \cup C_{i} \cup\{i-1, i\}$ and suppose that $A \cup B \cup C=\{1, \ldots, n\}$, in other words every row of $\boldsymbol{\lambda}$ falls into one of these categories. Then there is a horizontal-strip $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right) \in \mathcal{S}(\boldsymbol{\lambda})$ and $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$ with $l\left(S_{\varphi_{t}}\right)=l\left(R_{t}\right)$ for all $t \in A \cup B$ and $l\left(S_{\varphi_{i}}\right)=l\left(R_{i-1}\right)$.

Example 5.40. Figure 5.6 illustrates a situation where we can apply Lemma 5.39. The rows below $\boldsymbol{\lambda}$ with crosses signify rows that cannot be present because the condition $A \cup B \cup C=$ $\{1, \ldots, n\}$ requires that every row of $\boldsymbol{\lambda}$ be either disjoint from R_{i-1} and R_{i}, contained in R_{i-1}, contained in R_{i}, or containing both. Lemma 5.39 allows us to locally rotate the six rows of C to produce the similar horizontal-strip $\boldsymbol{\mu}$. Although our proof constructs this specific $\boldsymbol{\mu}$, we will only need that $l\left(S_{\varphi_{t}}\right)=l\left(R_{t}\right)$ for all $t \in A \cup B$ and $l\left(S_{\varphi_{i}}\right)=l\left(R_{i-1}\right)$.

Proof of Lemma 5.39. Informally, we will first use commuting and cycling to bring the rows of C together. To be specific, we first claim that if $t \in C_{i}$ and $t^{\prime} \notin C_{i}$ with either $t>t^{\prime}>i$, then $R_{t} \leftrightarrow R_{t^{\prime}}$. Because $t \in C_{i}$, we have $R_{t} \prec R_{i}$ and $M_{i-1, t}=0$, so by Proposition 5.2 we have $l\left(R_{i}\right) \leqslant l\left(R_{t}\right) \leqslant r\left(R_{t}\right) \leqslant r\left(R_{i}\right)$. Now if $t^{\prime} \in A$, then $M_{i-1, t^{\prime}}=M_{i, t}=M_{t, t^{\prime}}=0$, so either $r\left(R_{t^{\prime}}\right)<l\left(R_{i-1}\right)-1<l\left(R_{t}\right)-1$ and $R_{t} \leftrightarrow R_{t^{\prime}}$ by Proposition 3.10, Parts 2 and 3, or $l\left(R_{t^{\prime}}\right)>r\left(R_{i}\right) \geqslant r\left(R_{t}\right) \geqslant l\left(R_{t}\right)$, but now we cannot have $R_{t} \leftrightarrow R_{t^{\prime}}$ by Corollary 3.13, Part 3. If $t^{\prime} \in B$, then $R_{t^{\prime}} \prec R_{i-1}$, so by Proposition 5.2 we have $l\left(R_{t^{\prime}}\right) \leqslant l\left(R_{i-1}\right)-1<l\left(R_{t}\right)$, but now we cannot have $R_{t} \leftrightarrow R_{t^{\prime}}$ by Corollary 3.13, Part 3. If $t^{\prime} \in C_{i-1}$, then because $R_{t^{\prime}} \prec R_{i-1}$ and $M_{i, t^{\prime}}=0$, we have $r\left(R_{t^{\prime}}\right)<l\left(R_{i}\right)-1 \leqslant l\left(R_{t}\right)-1$, so $R_{t} \leftrightarrow R_{t^{\prime}}$ by Proposition 3.10, Part 1. This establishes our claim.

Therefore, by cycling and commuting, we may assume that $C_{i}=\{i+1, \ldots, y\}$ for some y and similarly, by considering a rotation of $\boldsymbol{\lambda}$, we may assume that $C_{i-1}=\{x, \ldots, i-2\}$ for some x. In particular, we have $l\left(R_{i-1}\right) \leqslant l\left(R_{t}\right) \leqslant r\left(R_{t}\right) \leqslant r\left(R_{i-1}\right)$ for every $t \in C_{i-1}$ and $l\left(R_{i}\right) \leqslant l\left(R_{t}\right) \leqslant r\left(R_{t}\right) \leqslant r\left(R_{i}\right)$ for every $t \in C_{i}$. To summarize, we have

$$
\begin{equation*}
\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{x-1}, R_{x}, \ldots, R_{i-2}, R_{i-1}, R_{i}, R_{i+1}, \ldots, R_{y}, R_{y+1}, \ldots, R_{n}\right), \tag{5.21}
\end{equation*}
$$

where $A \cup B=\{1, \ldots, x-1\} \cup\{y+1, \ldots, n\}, C_{i-1}=\{x, \ldots, i-2\}$, and $C_{i}=\{i+1, \ldots, y\}$.
Now let $N=l\left(R_{i-1}\right)+r\left(R_{i}\right)$ and define the horizontal-strip $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ by $S_{t}=R_{t}$ if $t<x$ or $t>y$, and $S_{t}=N-R_{x+y-t}$ otherwise, that is

$$
\begin{equation*}
\boldsymbol{\mu}=\left(R_{1}, \ldots, R_{x-1}, N-R_{y}, \ldots, N-R_{i}, N-R_{i-1}, \ldots, N-R_{x}, R_{y+1}, \ldots, R_{n}\right) \tag{5.22}
\end{equation*}
$$

\square

\square

Figure 5.6: A horizontal-strip $\boldsymbol{\lambda}$ and a local rotation $\boldsymbol{\mu}$.
and define $\varphi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ by $\varphi_{t}=t$ if $t<x$ or $t>y$ and $\varphi_{t}=x+y-t$ otherwise. Indeed, we have $l\left(S_{\varphi_{t}}\right)=l\left(R_{t}\right)$ for all $t \in A \cup B$ and $l\left(S_{\varphi_{i}}\right)=\ell\left(N-R_{i}\right)=$ $l\left(R_{i-1}\right)+r\left(R_{i}\right)-r\left(R_{i}\right)=l\left(R_{i-1}\right)$. We claim that $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$. We have $\left|R_{t}\right|=\left|S_{\varphi_{t}}\right|$ for every $1 \leqslant t \leqslant n$, so it remains to check that the edge weights are preserved. If $t, t^{\prime} \in A \cup B$, then the relative positions of R_{t} and $R_{t^{\prime}}$ have not changed, so indeed $M_{t, t^{\prime}}(\boldsymbol{\lambda})=M_{\varphi_{t}, \varphi_{t^{\prime}}}(\boldsymbol{\mu})$. If $t, t^{\prime} \in C$, then this follows because $M\left(R_{t}, R_{t^{\prime}}\right)=M\left(N-R_{t^{\prime}}, N-R_{t}\right)$. Now suppose that $t \in A \cup B$ and $t^{\prime} \in C$. We have either $t^{\prime}<i-1$ and $R_{t^{\prime}} \prec R_{i-1}$ or $t^{\prime}>i$ and $R_{t^{\prime}} \prec R_{i}$, so in either case we have

$$
\begin{equation*}
l\left(R_{i-1}\right) \leqslant l\left(R_{t^{\prime}}\right) \leqslant r\left(R_{t^{\prime}}\right) \leqslant r\left(R_{i}\right), \text { so } l\left(R_{i-1}\right) \leqslant \ell\left(N-R_{t^{\prime}}\right) \leqslant r\left(N-R_{t^{\prime}}\right) \leqslant r\left(R_{i}\right) \tag{5.23}
\end{equation*}
$$

Also note that $\chi(t>i)=\chi(t>i-1)=\chi\left(t>t^{\prime}\right)=\chi\left(t>x+y-t^{\prime}\right)$. Now if $t \in A$, we have either

$$
\begin{align*}
& l\left(R_{t}\right)>r\left(R_{i}\right)+\chi(i>t) \geqslant r\left(N-R_{t^{\prime}}\right)+\chi\left(i>x+y-t^{\prime}\right) \text { or } \tag{5.24}\\
& r\left(R_{t}\right)<l\left(R_{i-1}\right)-\chi(t>i) \leqslant \ell\left(N-R_{t^{\prime}}\right)-\chi\left(t>x+y-t^{\prime}\right), \tag{5.25}
\end{align*}
$$

so in either case, we have $M_{\varphi_{t}, \varphi_{t^{\prime}}}(\boldsymbol{\mu})=0$. Similarly, if $t \in B$, we have

$$
\begin{align*}
& l\left(R_{t}\right) \leqslant l\left(R_{i-1}\right)+\chi(i-1>t) \leqslant \ell\left(N-R_{t^{\prime}}\right)+\chi\left(x+y-t^{\prime}>t\right) \text { and } \tag{5.26}\\
& r\left(R_{t}\right) \geqslant r\left(R_{i}\right)-\chi(t>i) \geqslant r\left(N-R_{t^{\prime}}\right)-\chi\left(t>x+y-t^{\prime}\right) \tag{5.27}
\end{align*}
$$

so we have $N-R_{t^{\prime}} \prec R_{t}$ and $M_{\varphi_{t}, \varphi_{t^{\prime}}}(\boldsymbol{\mu})=\left|S_{\varphi_{t^{\prime}}}\right|$.
Finally, we show that $G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}}(\boldsymbol{x} ; q)$. Define the horizontal-strips

$$
\begin{align*}
\boldsymbol{\lambda}^{\prime} & =\left(R_{1}, \ldots, R_{i}, R_{i-1}, \ldots, R_{n}\right), \tag{5.28}\\
\boldsymbol{\lambda}^{\prime \prime} & =\left(R_{1}, \ldots, R_{i-1} \cup R_{i}, R_{i-1} \cap R_{i}, \ldots, R_{n}\right), \tag{5.29}\\
\boldsymbol{\mu}^{\prime} & =\left(R_{1}, \ldots, N-R_{y}, \ldots, N-R_{i-1}, N-R_{i}, \ldots, N-R_{x}, \ldots, R_{n}\right), \text { and } \tag{5.30}\\
\boldsymbol{\mu}^{\prime \prime} & =\left(R_{1}, \ldots,\left(N-R_{i}\right) \cup\left(N-R_{i-1}\right),\left(N-R_{i}\right) \cap\left(N-R_{i-1}\right), \ldots, R_{n}\right) . \tag{5.31}
\end{align*}
$$

Because Lemma 3.19 describes exactly how to derive the weighted graphs $\Pi\left(\boldsymbol{\lambda}^{\prime}\right)$ and $\Pi\left(\boldsymbol{\lambda}^{\prime \prime}\right)$ from $\Pi(\boldsymbol{\lambda})$, we have that $\Pi\left(\boldsymbol{\lambda}^{\prime}\right) \cong \Pi\left(\boldsymbol{\mu}^{\prime}\right)$ and $\Pi\left(\boldsymbol{\lambda}^{\prime \prime}\right) \cong \Pi\left(\boldsymbol{\mu}^{\prime \prime}\right)$. We also have $n\left(\boldsymbol{\lambda}^{\prime \prime}\right)<n(\boldsymbol{\lambda})$, $n\left(\boldsymbol{\lambda}^{\prime}\right)=n(\boldsymbol{\lambda})$, and $M\left(\boldsymbol{\lambda}^{\prime}\right)>M(\boldsymbol{\lambda})$, so because $\boldsymbol{\lambda}$ satisfies (3.16) by hypothesis, we have that $G_{\boldsymbol{\lambda}^{\prime}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}^{\prime}}(\boldsymbol{x} ; q)$ and $G_{\boldsymbol{\lambda}^{\prime \prime}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}^{\prime \prime}}(\boldsymbol{x} ; q)$. Finally, by Lemma 3.18, we have

$$
\begin{equation*}
G_{\boldsymbol{\lambda}}(\boldsymbol{x} ; q)=\frac{1}{q} G_{\boldsymbol{\lambda}^{\prime}}(\boldsymbol{x} ; q)+\frac{q-1}{q} G_{\boldsymbol{\lambda}^{\prime \prime}}(\boldsymbol{x} ; q)=\frac{1}{q} G_{\boldsymbol{\mu}^{\prime}}(\boldsymbol{x} ; q)+\frac{q-1}{q} G_{\boldsymbol{\mu}^{\prime \prime}}(\boldsymbol{x} ; q)=G_{\boldsymbol{\mu}}(\boldsymbol{x} ; q) . \tag{5.32}
\end{equation*}
$$

This completes the proof.
The hypothesis of Lemma 5.39 that $A \cup B \cup C=\{1, \ldots, n\}$ is a little technical so it will be convenient to rephrase it as follows.

Proposition 5.41. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip with $l\left(R_{i}\right)=r\left(R_{i-1}\right)+1$ and define the sets A, B, C, and I as in Lemma 5.39. If the following hold for every $t \in I$, then we have $A \cup B \cup C=\{1, \ldots, n\}$.

1. If $M_{i-1, t}>0$ and $M_{i, t}>0$, then $R_{i-1} \prec R_{t}$ and $R_{i} \prec R_{t}$.
2. If $M_{i-1, t}>0$ and $M_{i, t}=0$, then $R_{t} \prec R_{i-1}$.
3. If $M_{i-1, t}=0$ and $M_{i, t}>0$, then $R_{t} \prec R_{i}$.
4. If $R_{t} \prec R_{i-1}$, then $M_{i, t}=0, M_{a, t}=0$ for all $a \in A$, and $R_{t} \prec R_{b}$ for all $b \in B$.
5. If $R_{t} \prec R_{i}$, then $M_{i-1, t}=0, M_{a, t}=0$ for all $a \in A$, and $R_{t} \prec R_{b}$ for all $b \in B$.

Proof. Let $t \in I$. We need to show that $t \in A \cup B \cup C_{i-1} \cup C_{i}$. The integers $M_{i-1, t}$ and $M_{i, t}$ are either zero or nonzero. If $M_{i-1, t}=M_{i, t}=0$, then $t \in A$. If $M_{i-1, t}>0$ and $M_{i, t}>0$, then by (1) we have $t \in B$. If $M_{i-1, t}>0$ and $M_{i, t}=0$, then by (2) and (4) we have $t \in C_{i-1}$. If $M_{i-1, t}=0$ and $M_{i, t}>0$, then by (3) and (5) we have $t \in C_{i}$.

The next Lemma is very technical but it is the key idea that uses local rotation to extend Corollary 5.26 to strict sequences.

Lemma 5.42. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip with a sequence $\left(R_{j_{1}}, \ldots, R_{j_{k}}\right)$ with $k \geqslant 2, j_{1}<\cdots<j_{k}, l\left(R_{j_{t+1}}\right)=r\left(R_{j_{t}}\right)+1$ for $1 \leqslant t \leqslant k-1$, and suppose that there is no noncommuting path in $\boldsymbol{\lambda}$ from $R_{j_{t}}$ to $R_{j_{t+1}}$ for any $1 \leqslant t \leqslant k-1$. Assume that $\boldsymbol{\lambda}$ satisfies (3.16). Let $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ and $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$ be such that
for some permutation $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ we have $l\left(S_{\varphi_{j_{\sigma_{t+1}}}}\right)=r\left(S_{\varphi_{j_{\sigma_{t}}}}\right)+1$
for every $1 \leqslant t \leqslant k-1$. Then there exists a good substitute for $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.
Example 5.43. Lemma 5.42 applies in a situation like the one below. Informally, the condition (5.33) asks that these rows in $\boldsymbol{\lambda}$ still link end to end in $\boldsymbol{\mu}$, although they may be permuted. In this example, we have $\sigma_{1}=2, \sigma_{2}=4, \sigma_{3}=1$, and $\sigma_{4}=3$.

Remark 5.44. If $\left(R_{j_{1}}, \ldots, R_{j_{k}}\right)$ is a strict sequence of $\boldsymbol{\lambda}$, then $k \geqslant 2, j_{1}<\cdots<j_{k}$, and by Proposition 5.33, $l\left(R_{j_{t+1}}\right)=r\left(R_{j_{t}}\right)+1$ for $1 \leqslant t \leqslant k-1$. Moreover, if $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ and $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$, then by Remark 5.32 and by cycling $\boldsymbol{\mu}$ if necessary, there will be a permutation $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ with $\left(S_{\varphi_{\sigma_{1}}}, \ldots, S_{\varphi_{j_{k}}}\right)$ a strict sequence and therefore $l\left(S_{\varphi_{j_{\sigma_{t+1}}}}\right)=r\left(S_{\varphi_{j_{\sigma_{t}}}}\right)+1$ for every $1 \leqslant t \leqslant k-1$. Therefore, a strict sequence satisfies the hypothesis (5.33) of Lemma 5.42.

Remark 5.45. Informally, the strategy will be to apply Lemma 5.39 to perform a series of local rotations to permute the rows of $\boldsymbol{\lambda}$ to match those of $\boldsymbol{\mu}$. We will be able to perform these local rotations unless some other row R_{t} of $\boldsymbol{\lambda}$ violates some condition of Proposition 5.41, forcing certain rows of $\boldsymbol{\lambda}$ to link end to end. However, in this case, these rows of $\boldsymbol{\lambda}$ will be a proper subset of rows that satisfies (5.33) and we can use induction to reason about these rows.

Proof of Lemma 5.42. We use induction on k. If $k=2$, then because $l\left(R_{j_{2}}\right)=r\left(R_{j_{1}}\right)+1$ and by hypothesis there is no noncommuting path in $\boldsymbol{\lambda}$ from $R_{j_{1}}$ to $R_{j_{2}}$, we can use Lemma 5.5 to replace $\boldsymbol{\lambda}$ with a similar horizontal-strip as necessary to assume that $j_{2}=j_{1}+1$, and then by (5.33) we have either $l\left(S_{\varphi_{j_{2}}}\right)=r\left(S_{\varphi_{j_{1}}}\right)+1$ or $l\left(S_{\varphi_{j_{1}}}\right)=r\left(S_{\varphi_{j_{2}}}\right)+1$, so $S_{\varphi_{j_{1}}} \leftrightarrow S_{\varphi_{j_{2}}}$ and the result follows from Corollary 5.19. So we now assume that $k \geqslant 3$ and that the result holds for $2 \leqslant k^{\prime} \leqslant k-1$. In particular, if $J \subseteq\{1, \ldots, k\}$ is an interval with $2 \leqslant|J| \leqslant k-1$ and such that $\sigma^{-1}(J)=\left\{1 \leqslant t^{\prime} \leqslant k: \sigma_{t^{\prime}} \in J\right\} \subseteq\{1, \ldots, k\}$ is an interval, then the sequence of rows $\left(R_{j_{t}}: t \in J\right)$ satisfies (5.33) and we are done by our induction hypothesis on k. In particular, if $\sigma_{1}=1$ or $\sigma_{k}=1$, then we can take $J=\{2, \ldots, k\}$, and if $\sigma_{1}=k$ or $\sigma_{k}=k$, then we can take $J=\{1, \ldots, k-1\}$, so we may assume that

$$
\begin{equation*}
2 \leqslant \sigma_{1}, \sigma_{k} \leqslant k-1 \tag{5.34}
\end{equation*}
$$

and in particular, we may assume that $k \geqslant 4$.
We now continue to use our induction hypothesis to make several additional simplifying assumptions. For $1 \leqslant t \leqslant n$ such that $t \neq j_{t^{\prime}}$ for any $1 \leqslant t^{\prime} \leqslant k$, consider the sets

$$
\begin{equation*}
E_{t}=\left\{1 \leqslant t^{\prime} \leqslant k: R_{j_{t^{\prime}}} \prec R_{t}\right\} \text { and } F_{t}=\left\{1 \leqslant t \leqslant k: M_{j_{t^{\prime}}, t}(\boldsymbol{\lambda})>0\right\} . \tag{5.35}
\end{equation*}
$$

Note that $E_{t} \subseteq F_{t}$. Also, if $t_{1}<t_{2}<t_{3}$ and $t_{1}, t_{3} \in F_{t}$, then by Proposition 3.10, Parts 1 and 3, we have

$$
\begin{equation*}
l\left(R_{t}\right) \leqslant r\left(R_{j_{t_{1}}}\right)+1 \leqslant l\left(R_{j_{t_{2}}}\right) \leqslant r\left(R_{j_{t_{2}}}\right) \leqslant l\left(R_{j_{t_{3}}}\right)-1 \leqslant r\left(R_{t}\right) \tag{5.36}
\end{equation*}
$$

so by Proposition 5.2 we have $R_{t_{2}} \prec R_{t}$ and $t_{2} \in E_{t}$, so E_{t} and F_{t} are intervals in $\{1, \ldots, k\}$ and $\left|E_{t}\right| \geqslant\left|F_{t}\right|-2$. Similarly, consider the sets

$$
\begin{equation*}
E_{t}^{\prime}=\left\{1 \leqslant t^{\prime} \leqslant k: S_{\varphi_{j \sigma_{t^{\prime}}}} \prec S_{\varphi_{t}}\right\} \text { and } F_{t}^{\prime}=\left\{1 \leqslant t^{\prime} \leqslant k: M_{\varphi_{j \sigma_{t^{\prime}}}, \varphi_{t}}(\boldsymbol{\mu})>0\right\} . \tag{5.37}
\end{equation*}
$$

Note that $E_{t}^{\prime} \subseteq F_{t}^{\prime}, E_{t}^{\prime}=\sigma^{-1}\left(E_{t}\right), F_{t}^{\prime}=\sigma^{-1}\left(F_{t}\right)$ and as before, if $t_{1}<t_{2}<t_{3}$ and $t_{1}, t_{3} \in F_{t}^{\prime}$, then by Proposition 3.10, Parts 1 and 3, we have

$$
\begin{equation*}
l\left(S_{\varphi_{t}}\right) \leqslant r\left(S_{\varphi_{j_{\sigma_{1}}}}\right)+1 \leqslant l\left(S_{\varphi_{j_{\sigma_{2}}}}\right) \leqslant r\left(S_{\varphi_{j_{\sigma_{2}}}}\right) \leqslant l\left(S_{\varphi_{j_{\sigma_{3}}}}\right)-1 \leqslant r\left(S_{\varphi_{t}}\right) \tag{5.38}
\end{equation*}
$$

so by Proposition 5.2, we have $S_{\varphi_{j \sigma_{t_{2}}}} \prec S_{\varphi_{t}}$ and $t_{2} \in E_{t}^{\prime}$, so E_{t}^{\prime} and F_{t}^{\prime} are intervals in $\{1, \ldots, k\}$. Therefore, if $2 \leqslant\left|F_{t}\right| \leqslant k-1$, then taking $J=F_{t}$ above we are done by our induction hypothesis on k. Similarly, if $\left|F_{t}\right|=k$ and $\left|E_{t}\right| \leqslant k-1$, then because $\left|E_{t}\right| \geqslant k-2 \geqslant 2$, taking $J=E_{t}$ above we are done by our induction hypothesis on k. This means that we may assume that

$$
\begin{equation*}
\text { if }\left|F_{t}\right| \geqslant 2, \text { then } E_{t}=F_{t}=\{1, \ldots, k\} \tag{5.39}
\end{equation*}
$$

Now suppose that $F_{t}=\left\{t^{\prime}\right\}$. Our goal is to show that we may assume that $R_{t} \prec R_{j_{t^{\prime}}}$, that $M_{a, t}(\boldsymbol{\lambda})=0$ for every a with $M_{a, j_{t^{\prime}}}(\boldsymbol{\lambda})=0$, and $R_{t} \prec R_{b}$ for every b with $R_{j_{t^{\prime}}} \prec R_{b}$.

Suppose that $R_{t} \nprec R_{j_{t^{\prime}}}$. If $2 \leqslant t^{\prime} \leqslant k-1$, then $M_{j_{t^{\prime}-1}, t}(\boldsymbol{\lambda})=0$ and $M_{j_{t^{\prime}+1}, t}(\boldsymbol{\lambda})=0$ by definition of F_{t} and by Proposition 3.10, Parts 1 and 3, we would have

$$
\begin{equation*}
l\left(R_{j_{t^{\prime}}}\right)=r\left(R_{j_{t^{\prime}-1}}\right)+1 \leqslant l\left(R_{t}\right) \leqslant r\left(R_{t}\right) \leqslant l\left(R_{j_{t^{\prime}+1}}\right)-1=r\left(R_{j_{t^{\prime}}}\right) \tag{5.40}
\end{equation*}
$$

and therefore $R_{t} \prec R_{j_{t^{\prime}}}$ by Proposition 5.2. This means that we must have $t^{\prime}=1$ or k and for the same reason, $\sigma_{t^{\prime}}=1$ or k, but this contradicts our assumption (5.34). Therefore, we must have $R_{t} \prec R_{j_{t^{\prime}}}$.

Now suppose that there is some a with $M_{a, j_{t^{\prime}}}(\boldsymbol{\lambda})=0$ but $M_{a, t}(\boldsymbol{\lambda})>0$. Because $R_{t} \prec R_{j_{t^{\prime}}}$, we have $M_{j_{t^{\prime}}, t}(\boldsymbol{\lambda})+M_{a, t}(\boldsymbol{\lambda}) \geqslant\left|R_{t}\right|+1$, so either $j_{t^{\prime}}<a$ and the pair $\left(R_{j_{t^{\prime}}}, R_{a}\right)$ is strict, or $a<j_{t^{\prime}}$ and the pair $\left(R_{a}, R_{j_{t^{\prime}}}\right)$ is strict. In either case, by Proposition 5.24 we have $R_{j_{t^{\prime}}} \leftrightarrow R_{a}$, and by Corollary 3.13, Part 3, we have either

$$
\begin{equation*}
l\left(R_{a}\right)=r\left(R_{j_{t^{\prime}}}\right)+1=l\left(R_{j_{t^{\prime}+1}}\right) \text { or } l\left(R_{j_{t^{\prime}}}\right)=r\left(R_{a}\right)+1 \tag{5.41}
\end{equation*}
$$

In particular, if $t^{\prime}=1$, then either $F_{a}=\varnothing$ or $\{2\}$, if $2 \leqslant t^{\prime} \leqslant k-1$, then either $F_{a}=\left\{t^{\prime}-1\right\}$ or $\left\{t^{\prime}+1\right\}$, and if $t^{\prime}=k$, then either $F_{a}=\varnothing$ or $\{k-1\}$. Similarly, F_{a}^{\prime} is either empty, in which case $\sigma_{t^{\prime}}=1$ or k, or F_{a}^{\prime} and F_{t}^{\prime} consist of consecutive singletons. Therefore, if $F_{a}=\varnothing$, then this contradicts (5.34), and otherwise, taking $J=F_{t} \cup F_{a}$ we are done by our induction hypothesis on k.

Next, let us suppose that for some b we have $R_{j_{t^{\prime}}} \prec R_{b}$ but $R_{t} \nprec R_{b}$. If $2 \leqslant t^{\prime} \leqslant k-1$, then $M_{j_{t^{\prime}-1}, t}(\boldsymbol{\lambda})=0$ and $M_{j_{t^{\prime}+1}, t}(\boldsymbol{\lambda})=0$ by definition of F_{t} and by Proposition 3.10, Parts 2 and 3 , we would have

$$
\begin{equation*}
l\left(R_{j_{t^{\prime}}}\right)=r\left(R_{j_{t^{\prime}-1}}\right)+1 \leqslant l\left(R_{t}\right) \leqslant r\left(R_{t}\right) \leqslant l\left(R_{j_{t^{\prime}+1}}\right)-1=r\left(R_{j_{t^{\prime}}}\right) \tag{5.42}
\end{equation*}
$$

Now if $R_{j_{t^{\prime}}} \subseteq R_{b}$, we would have $R_{t} \subseteq R_{j_{t^{\prime}}} \subseteq R_{b}$ and $R_{t} \prec R_{b}$ by Proposition 5.2, so we must have either $R_{j_{t^{\prime}}} \subseteq R_{b}^{+}$and $l\left(R_{b}\right) \leqslant l\left(R_{j_{t^{\prime}}}\right)-1=r\left(R_{j_{t^{\prime}-1}}\right)$, or $R_{j_{t^{\prime}}} \subseteq R_{b}^{-}$and $r\left(R_{b}\right) \geqslant$ $r\left(R_{j_{t^{\prime}}}\right)+1=l\left(R_{j_{t^{\prime}+1}}\right)$. However, this means that either $\left\{t^{\prime}-1, t^{\prime}\right\} \subseteq F_{b}$ or $\left\{t^{\prime}, t^{\prime}+1\right\} \subseteq F_{b}$, so by (5.39) we must have $F_{b}=\{1, \ldots, k\}$, so $M_{j_{t^{\prime}-1}, t}(\boldsymbol{\lambda})>0$ and $M_{j_{t^{\prime}+1}, t}(\boldsymbol{\lambda})>0$, and by Proposition 5.2, we have

$$
\begin{equation*}
l\left(R_{b}\right) \leqslant r\left(R_{j_{t^{\prime}-1}}\right)+1=l\left(R_{j_{t^{\prime}}}\right) \leqslant l\left(R_{t}\right) \leqslant r\left(R_{t}\right) \leqslant r\left(R_{j_{t^{\prime}}}\right)=l\left(R_{j_{t^{\prime}+1}}\right)-1 \leqslant r\left(R_{b}\right) \tag{5.43}
\end{equation*}
$$

and $R_{t} \prec R_{b}$ by Proposition 5.2 after all. Therefore, if $R_{j_{t^{\prime}}} \prec R_{b}$ but $R_{t} \nprec R_{b}$, we must have $t^{\prime}=1$ or k and for the same reason, $\sigma_{t^{\prime}}=1$ or k, but this contradicts our assumption (5.34). To summarize, we may assume that

$$
\begin{align*}
& \text { if }\left|F_{t}\right| \geqslant 2 \text {, then } E_{t}=F_{t}=\{1, \ldots, k\} \text {, and if } F_{t}=\left\{t^{\prime}\right\} \text {, then } R_{t} \prec R_{j_{t^{\prime}}}, \tag{5.44}\\
& M_{a, t}(\boldsymbol{\lambda})=0 \text { whenever } M_{a, j_{t^{\prime}}}(\boldsymbol{\lambda})=0 \text {, and } R_{t} \prec R_{b} \text { whenever } R_{j_{t^{\prime}}} \prec R_{b} \text {. }
\end{align*}
$$

Let t_{0} and t_{1} be such that $t_{0}<t_{1}$ and $\left\{t_{0}, t_{1}\right\}=\left\{\sigma_{1}, \sigma_{2}\right\}$, and let $x=j_{t_{0}}$ and $y=j_{t_{1}}$. Note that we have $x<y, l\left(R_{y}\right) \geqslant r\left(R_{x}\right)+1$, and $S_{\varphi_{x}} \not \leftrightarrow S_{\varphi_{y}}$. We use induction on $l\left(R_{y}\right)-r\left(R_{x}\right)$.

If $l\left(R_{y}\right)-r\left(R_{x}\right)=1$, then $t_{1}=t_{0}+1$ and because there is no noncommuting path in $\boldsymbol{\lambda}$ from R_{x} to R_{y}, we may use Lemma 5.5 to assume that $y=x+1$. In this case, it now follows from Corollary 5.19 that there exists a good substitute for $(\boldsymbol{\lambda}, \boldsymbol{\mu})$. So we now assume that $l\left(R_{y}\right)-r\left(R_{x}\right) \geqslant 2$, so in particular $t_{1} \geqslant t_{0}+2$. Because there is no noncommuting path in $\boldsymbol{\lambda}$ from $R_{j_{t_{1}-1}}$ to R_{y}, we may use Lemma 5.5 to assume that $y=j_{t_{1}-1}+1$.

Our plan now is to apply Lemma 5.39 to the rows R_{y-1} and R_{y} to replace $\boldsymbol{\lambda}$ with a similar horizontal-strip for which $l\left(R_{y}\right)$ has decreased and $r\left(R_{x}\right)$ has not changed, so that we will be done by our induction hypothesis on $l\left(R_{y}\right)-r\left(R_{x}\right)$. It remains to check the conditions of Proposition 5.41.

1. If $M_{y-1, t}(\boldsymbol{\lambda})>0$ and $M_{y, t}(\boldsymbol{\lambda})>0$, then $\left|F_{t}\right| \geqslant 2$, so by (5.44) we have $E_{t}=\{1, \ldots, k\}$, so $R_{y-1} \prec R_{t}$ and $R_{y} \prec R_{t}$.
2. If $M_{y-1, t}(\boldsymbol{\lambda})>0$ and $M_{y, t}(\boldsymbol{\lambda})=0$, then $t_{1}-1 \in F_{t}$ and $t_{1} \notin F_{t}$, so by (5.44) we must have $F_{t}=\left\{t_{1}-1\right\}$ and then $R_{t} \prec R_{y-1}$.
3. If $M_{y-1, t}(\boldsymbol{\lambda})=0$ and $M_{y, t}(\boldsymbol{\lambda})>0$, then $t_{1}-1 \notin F_{t}$ and $t_{1} \in F_{t}$, so by (5.44) we must have $F_{t}=\left\{t_{1}\right\}$ and $R_{t} \prec R_{y}$.
4. If $R_{t} \prec R_{y-1}$, then $t_{1}-1 \in F_{t}$. By Proposition 3.10, Part 1, and because $x<y$, we cannot have both $M_{x, t}(\boldsymbol{\lambda})>0$ and $M_{y, t}(\boldsymbol{\lambda})>0$ because then

$$
\begin{align*}
l\left(R_{t}\right) & \leqslant r\left(R_{x}\right)+\chi(x>t) \text { and } r\left(R_{t}\right) \geqslant l\left(R_{y}\right)-\chi(t>y), \text { so } \tag{5.45}\\
\left|R_{t}\right| & =r\left(R_{t}\right)-l\left(R_{t}\right)+1 \geqslant l\left(R_{y}\right)-r\left(R_{x}\right)+1-\chi(t>y)-\chi(x>t) \\
& =r\left(R_{y-1}\right)+1-l\left(R_{y-1}\right)+1+1-\chi(t>y)-\chi(x>t)>\left|R_{y-1}\right|,
\end{align*}
$$

contradicting $R_{t} \prec R_{y-1}$ by Proposition 5.2. Therefore, either $t_{0} \notin F_{t}$ or $t_{1} \notin F_{t}$, so by (5.44) we must have $F_{t}=\left\{t_{1}-1\right\}$ and $M_{y, t}(\boldsymbol{\lambda})=0$. Moreover, if $a \in A$, then in particular $M_{a, y}(\boldsymbol{\lambda})=0$, so by (5.44) we have $M_{a, t}(\boldsymbol{\lambda})=0$, and if $b \in B$, then in particular we have $R_{y-1} \prec R_{b}$, so by (5.44) we have $R_{t} \prec R_{b}$ as well.
5. If $R_{t} \prec R_{y}$, then $t_{1} \in F_{t}$. By Proposition 5.2 and because $x<y$, we cannot have $M_{x, t}(\boldsymbol{\lambda})>0$ because then

$$
\begin{align*}
l\left(R_{t}\right) & \leqslant r\left(R_{x}\right)+\chi(x>t) \leqslant l\left(R_{y-1}\right)-1+\chi(x>t) \leqslant r\left(R_{y-1}\right)-1+\chi(x>t) \tag{5.46}\\
& =l\left(R_{y-1}\right)-1-1+\chi(x>t) \leqslant l\left(R_{y}\right)-1-\chi(t>y)<l\left(R_{y}\right)-\chi(t>y)
\end{align*}
$$

contradicting $R_{t} \prec R_{y}$ by Proposition 5.2. Therefore, $t_{0} \notin F_{t}$, so by (5.44) we must have $F_{t}=\left\{t_{1}\right\}$ and $M_{y-1, t}(\boldsymbol{\lambda})=0$. Moreover, if $a \in A$, then in particular $M_{a, y-1}(\boldsymbol{\lambda})=0$, so by (5.44) we have $M_{a, t}(\boldsymbol{\lambda})=0$, and if $b \in B$, then in particular we have $R_{y} \prec R_{b}$, so by (5.44) we have $R_{t} \prec R_{b}$ as well.

This concludes our verification of the conditions of Proposition 5.41. Therefore, the result follows by Lemma 5.39 and our induction hypothesis on $l\left(R_{y}\right)-r\left(R_{x}\right)$.

We now generalize Corollary 5.26 to the case where $\boldsymbol{\lambda}$ has a pair of strict rows that are not necessarily adjacent.

Corollary 5.46. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip that satisfies (3.16). If $\boldsymbol{\lambda}$ has a strict sequence $\left(R_{j_{1}}, \ldots, R_{j_{k}}\right)$ such that the pairs $\left(R_{i^{\prime}}, R_{j^{\prime}}\right)$ are not strict for $j_{1} \leqslant i^{\prime}<j^{\prime} \leqslant j_{k}$, then $\boldsymbol{\lambda}$ is good.

Proof. Because $\boldsymbol{\lambda}$ has a strict sequence $\left(R_{j_{1}}, \ldots, R_{j_{k}}\right)$ such that the pairs $\left(R_{i^{\prime}}, R_{j^{\prime}}\right)$ are not strict for $j_{1} \leqslant i^{\prime}<j^{\prime} \leqslant j_{k}$, we may assume that $\left(R_{j_{1}}, \ldots, R_{j_{k}}\right)$ is such a strict sequence with $j_{k}-j_{1}$ minimal, and among such strict sequences, with k minimal. Now if there is a minimal noncommuting path in $\boldsymbol{\lambda}$ from $R_{j_{t}}$ to $R_{j_{t+1}}$ for any $1 \leqslant t \leqslant k-1$, then by Proposition 5.37, there is either a strict sequence between $R_{j_{t}}$ and $R_{j_{t+1}}$, contradicting minimality of $j_{k}-j_{1}$, or there is some $j_{t}<x<j_{t+1}$ with $l\left(R_{x}\right)=l\left(R_{j_{t+1}}\right)$ and $R_{j_{t+1}} \nprec R_{x}$, but in that case by Proposition 5.35 there is either a strict sequence between nearer rows, contradicting minimality of $j_{k}-j_{1}$, there is a shorter strict sequence from $R_{j_{1}}$ to $R_{j_{k}}$, contradicting minimality of k, or there is a strict pair, contradicting our hypothesis. Therefore, there is no minimal noncommuting path in $\boldsymbol{\lambda}$ from $R_{j_{t}}$ to $R_{j_{t+1}}$ for any $1 \leqslant t \leqslant k-1$.

Now let $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ and $\varphi: \Pi(\boldsymbol{\lambda}) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$. By cycling, we may assume without loss of generality that $\varphi_{h}>\varphi_{j_{t}}$ for every $1 \leqslant t \leqslant k$. Because $M_{j_{t}, j_{t+1}}(\boldsymbol{\lambda})=0$ for $1 \leqslant t \leqslant k-1$, the integers $l\left(S_{\varphi_{j_{t}}}\right)$ for $1 \leqslant t \leqslant k$ must be distinct, so let $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ be the permutation that sorts them in increasing order, in other words

$$
\begin{equation*}
l\left(S_{\varphi_{j_{\sigma_{1}}}}\right)<l\left(S_{\varphi_{j_{\sigma_{2}}}}\right)<\cdots<l\left(S_{\varphi_{j_{\sigma_{k}}}}\right) \tag{5.47}
\end{equation*}
$$

Now the sequence $\left(S_{\varphi_{j_{1}}}, \ldots, S_{\varphi_{j_{k}}}\right)$ is strict, so by Lemma 5.42 there exists a good substitute for $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.

Corollary 5.47. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip that satisfies (3.16). If $\boldsymbol{\lambda}$ has a pair of strict rows, then $\boldsymbol{\lambda}$ is good.

Proof. Because $\boldsymbol{\lambda}$ has a pair of strict rows, we may assume that $\left(R_{i}, R_{j}\right)$ is a strict pair with $j-i$ minimal, in other words the pairs $\left(R_{i^{\prime}}, R_{j^{\prime}}\right)$ are not strict for $i \leqslant i^{\prime}<j^{\prime} \leqslant j$ with $j^{\prime}-i^{\prime}<j-i$. Also note that if there is no minimal noncommuting path in $\boldsymbol{\lambda}$ from R_{i} to R_{j}, then by Lemma 5.5 we may replace $\boldsymbol{\lambda}$ with a similar horizontal-strip as necessary to assume that $j=i+1$, in which case we are done by Corollary 5.26. Therefore, we may assume that there is a minimal noncommuting path in $\boldsymbol{\lambda}$ from R_{i} to R_{j}. By Proposition 5.37, there is either a strict sequence $\left(R_{j_{1}}, \ldots, R_{j_{k}}\right)$ in $\boldsymbol{\lambda}$ such that the pairs $\left(R_{i^{\prime}}, R_{j^{\prime}}\right)$ are not strict for $j_{1} \leqslant i^{\prime}<j^{\prime} \leqslant j_{k}$, in which case we are done by Corollary 5.46, or we have $M_{i, j}=0$ and there is $i<x<j$ with $l\left(R_{x}\right)=l\left(R_{j}\right)$ and $R_{j} \precsim R_{x}$. However, in the latter case, because the pair $\left(R_{i}, R_{j}\right)$ is strict, then since $M_{i, j}=0$ we must have $M_{i, k}+M_{j, k}=\left|R_{k}\right|+1$ for some k, but now $M_{i, k}+M_{x, k}=M_{i, k}+M_{j, k}=\left|R_{k}\right|+1$ so the pair $\left(R_{i}, R_{x}\right)$ is strict, contradicting minimality of $j-i$.

Corollary 5.48. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip that satisfies (3.16). If $\boldsymbol{\lambda}$ has a strict sequence $\left(R_{j_{1}}, \ldots, R_{j_{k}}\right)$, then $\boldsymbol{\lambda}$ is good.

Proof. By Corollary 5.47, we may assume that $\boldsymbol{\lambda}$ has no strict pairs, after which the result follows by Corollary 5.46.

Figure 5.7: A nesting horizontal-strip.

By Corollary 5.47 and Corollary 5.48, we may assume in completing the proof of Lemma 3.23 that there are no strict pairs or strict sequences in $\boldsymbol{\lambda}$ or any similar horizontal-strip. It will be convenient to make the following definition.

Definition 5.49. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip. We say that $\boldsymbol{\lambda}$ is nesting if for every $1 \leqslant i<j \leqslant n$ we have either $M_{i, j}=0, R_{i} \prec R_{j}$, or $R_{j} \prec R_{i}$, and if $M_{i, j}=0$, then $M_{i, k}+M_{j, k} \leqslant\left|R_{k}\right|$ for every k.

Example 5.50. An example of a nesting horizontal-strip is given in Figure 5.7. Informally, every pair of rows is either disjoint or one is contained in the other.

Corollary 5.51. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a horizontal-strip that satisfies (3.16). If $\boldsymbol{\lambda}$ is not nesting, then $\boldsymbol{\lambda}$ is good.

Proof. If $\boldsymbol{\lambda}$ is not nesting, then there is some $1 \leqslant i<j \leqslant n$ with either $0<M_{i, j}<$ $\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$ or $M_{i, j}=0$ and $M_{i, k}+M_{j, k} \geqslant\left|R_{k}\right|+1$ for some k. By rotating, we may assume that $l\left(R_{i}\right)<l\left(R_{j}\right)$ so that the pair $\left(R_{i}, R_{j}\right)$ is strict, and then the result follows from Corollary 5.47.

We now explore some properties of a nesting horizontal-strip.

Proposition 5.52. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a nesting horizontal-strip.

1. The pairs $\left(R_{i}, R_{j}\right)$ are not strict for $1 \leqslant i<j \leqslant n$.
2. If $R_{i} \prec R_{j}$ and $R_{j} \prec R_{k}$, then $R_{i} \prec R_{k}$. In other words, the relation \prec is transitive on the rows of $\boldsymbol{\lambda}$.
3. If $R_{i} \prec R_{j}$ and $M_{j, k}=0$, then $M_{i, k}=0$.
4. We cannot have $i<x<y<j$ with $l\left(R_{x}\right)=l\left(R_{j}\right)=r\left(R_{i}\right)-1=r\left(R_{y}\right)-1, R_{j} \precsim R_{x}$, and $R_{1} \precsim R_{y}$.

Proof.

1. This follows directly from the definitions of strictness and nesting.
2. Because $M_{i, j}+M_{j, k}=\left|R_{i}\right|+\left|R_{j}\right| \geqslant\left|R_{j}\right|+1$, then by definition of nesting we cannot have $M_{i, k}=0$, so we must have $R_{i} \prec R_{k}$ or $R_{k} \prec R_{i}$. If $R_{k} \prec R_{i}$, then by Proposition 5.2 we have $\left|R_{k}\right| \leqslant\left|R_{i}\right| \leqslant\left|R_{j}\right| \leqslant\left|R_{k}\right|$, so $\left|R_{i}\right|=\left|R_{k}\right|$ and in fact $R_{i} \prec R_{k}$ as well.
3. Because $M_{j, k}=0$, by definition of nesting we must have $M_{i, j}+M_{i, k}=\left|R_{i}\right|+M_{i, k} \leqslant\left|R_{i}\right|$, so we must have $M_{i, k}=0$.
4. Because the conditions $R_{j} \nprec R_{x}$ and $R_{1} \nprec R_{y}$ imply that $\left|R_{x}\right| \geqslant 2$ and $\left|R_{y}\right| \geqslant 2$, then we would have $M_{x, y}=1<\min \left\{\left|R_{x}\right|,\left|R_{y}\right|\right\}$, contradicting that $\boldsymbol{\lambda}$ is nesting.

Proposition 5.53. Let $\boldsymbol{\lambda}=\left(R_{1}, \ldots, R_{n}\right)$ be a nesting minimal noncommuting path with $l\left(R_{1}\right)<l\left(R_{n}\right), M_{1, n}=0$, and $R_{1} \leftrightarrow R_{n}$. Then we have $l\left(R_{t+1}\right)=r\left(R_{t}\right)+1$ for every $1 \leqslant t \leqslant n-1$.

Example 5.54. Informally, Proposition 5.53 states that if $\boldsymbol{\lambda}$ is nesting, a minimal noncommuting path must look like the example below.

Proof of Proposition 5.53. If $l\left(R_{n-1}\right)>l\left(R_{n}\right)$, then because $l\left(R_{1}\right)<l\left(R_{n}\right)$, we must have $l\left(R_{t-1}\right)<l\left(R_{t}\right)$ for some maximal $2 \leqslant t \leqslant n-1$. But then we must have $R_{t-1} \precsim R_{t+1}$ by Proposition 5.28 and therefore $R_{1} \prec R_{t+1}$ by Proposition 5.7, Part 1, which is impossible by Proposition 5.2 because $l\left(R_{1}\right)<l\left(R_{n}\right) \leqslant l\left(R_{t+1}\right)$. Therefore, we must have $l\left(R_{n-1}\right)<l\left(R_{n}\right)$, and more specifically, because $M_{n-1, n}<\min \left\{\left|R_{n-1}\right|,\left|R_{n}\right|\right\}$ by Corollary 3.13, Part 3 and because $\boldsymbol{\lambda}$ is nesting, we must have $M_{n-1, n}=0$ and $r\left(R_{n-1}\right)=l\left(R_{n}\right)-1>r\left(R_{1}\right)$. Similarly,
by rotating, we must have $l\left(R_{2}\right)=r\left(R_{1}\right)+1<l\left(R_{n}\right)$. Note that if $n=3$, then this proves our claim, so we now use induction on $n \geqslant 4$.

If $l\left(R_{1}\right)<l\left(R_{n-1}\right)$, then because $R_{1} \leftrightarrow R_{n-1}$ by minimality of the noncommuting path and therefore $M_{1, n-1}=0$ by Proposition 3.10, we have by our induction hypothesis that $l\left(R_{t+1}\right)=r\left(R_{t}\right)+1$ for every $1 \leqslant t \leqslant n-2$, which proves our claim. Similarly, by rotating, we are done if $r\left(R_{2}\right)<r\left(R_{n}\right)$. Therefore, the only remaining case to consider is when $l\left(R_{n-1}\right) \leqslant l\left(R_{1}\right)$ and $r\left(R_{2}\right) \geqslant r\left(R_{n}\right)$. However, we would have $R_{1} \prec R_{n-1}$ and $R_{n} \prec R_{2}$ by Proposition 5.2, and

$$
\begin{equation*}
l\left(R_{n-1}\right) \leqslant l\left(R_{1}\right) \leqslant r\left(R_{1}\right)+1=l\left(R_{2}\right) \leqslant r\left(R_{n-1}\right)=l\left(R_{n}\right)-1 \leqslant r\left(R_{n}\right) \leqslant r\left(R_{2}\right) \tag{5.48}
\end{equation*}
$$

and therefore $M_{2, n-1}>0$ by Proposition 3.10 Parts 2 and 3. Because $\boldsymbol{\lambda}$ is nesting, we must have either $R_{2} \prec R_{n-1}$ or $R_{n-1} \prec R_{2}$, but if $R_{2} \prec R_{n-1}$, we have $M_{2, n-1}+M_{2, n}=\left|R_{2}\right|+\left|R_{n}\right| \geqslant$ $\left|R_{2}\right|+1$, and if $R_{n-1} \prec R_{2}$, we have $M_{1, n-1}+M_{2, n-1}=\left|R_{1}\right|+\left|R_{n-1}\right| \geqslant\left|R_{n-1}\right|+1$, a contradiction in either case. This completes the proof.

We are at long last ready to prove Lemma 3.23, which implies Theorem 2.7. The strategy is as follows. We will use commuting and cycling to rewrite $\boldsymbol{\lambda}$ so that the bottom two rows are in the desired form. If the corresponding two rows S_{i} and S_{j} of $\boldsymbol{\mu}$ do not commute, then we are done by Corollary 5.19, and if there is no minimal noncommuting path between them, then we can again use commuting and cycling to bring them closer together until they do not commute. If there is a minimal noncommuting path ($S_{i}=S_{i_{1}}, \ldots, S_{i_{k}}=S_{j}$), then because we may assume that $\boldsymbol{\mu}$ is nesting, Proposition 5.53 specifies the structure of these rows. In this case, we will use an argument similar to that of the proof of Lemma 5.42 to locally rotate pairs of rows ($S_{i_{t-1}}, S_{i_{t}}$) of $\boldsymbol{\mu}$ to again bring S_{j} toward S_{i} until they do not commute.
Proof of Lemma 3.23. We first note that by Corollary 5.48 and Corollary 5.51, we may assume that $\boldsymbol{\lambda}$ is nesting and has no strict pairs or strict sequences. We will first show that there is a similar horizontal-strip $\boldsymbol{\lambda}^{\prime}=\left(R_{1}^{\prime}, \ldots, R_{n}^{\prime}\right) \in \mathcal{S}(\boldsymbol{\lambda})$ with $l\left(R_{1}^{\prime}\right)<l\left(R_{2}^{\prime}\right)$ and $R_{1}^{\prime} \leftrightarrow R_{2}^{\prime}$. Because $n(\boldsymbol{\lambda})-M(\boldsymbol{\lambda}) \geqslant 1$, by (3.7) we have $M_{i, j}(\boldsymbol{\lambda})<\min \left\{\left|R_{i}\right|,\left|R_{j}\right|\right\}$ for some $1 \leqslant i<j \leqslant n$, and because $\boldsymbol{\lambda}$ is nesting, we must in fact have $M_{i, j}(\boldsymbol{\lambda})=0$. By rotating and cycling, we may assume without loss of generality that $i=1$ and $l\left(R_{1}\right)<l\left(R_{j}\right)$, and then $l\left(R_{j}\right) \geqslant r\left(R_{1}\right)+1$ by Proposition 3.10, Parts 2 and 3.

Suppose that $l\left(R_{j}\right)-r\left(R_{1}\right)=1$, so that $R_{i} \not \leftrightarrow R_{j}$. If there is a minimal noncommuting path in $\boldsymbol{\lambda}$ from R_{1} to R_{j}, then by Proposition 5.37, either $\boldsymbol{\lambda}$ has a strict sequence, contradicting our assumption, or there is $1<x<y<j$ with $l\left(R_{x}\right)=l\left(R_{j}\right)=r\left(R_{i}\right)-1=r\left(R_{y}\right)-1, R_{j} \precsim R_{x}$, and $R_{1} \precsim R_{y}$, contradicting that $\boldsymbol{\lambda}$ is nesting by Proposition 5.52, Part 4. Therefore, there is no minimal noncommuting path in $\boldsymbol{\lambda}$ from R_{1} to R_{j}, so by Lemma 5.5 we can find our desired horizontal-strip $\boldsymbol{\lambda}^{\prime}$. We now suppose that $l\left(R_{j}\right)-r\left(R_{1}\right) \geqslant 2$, which means that $R_{1} \leftrightarrow R_{j}$ by Proposition 3.10, Part 1, and we use induction on $l\left(R_{j}\right)-r\left(R_{i}\right)$.

If there is a minimal noncommuting path $\left(R_{1}=R_{i_{1}}, \ldots, R_{i_{k}}=R_{j}\right)$ in $\boldsymbol{\lambda}$ from R_{1} to R_{j}, then because $R_{1} \leftrightarrow R_{j}$ we have by Proposition 5.53 that $l\left(R_{i_{2}}\right)-r\left(R_{1}\right)=1$ and we can repeat the above argument with the rows R_{1} and $R_{i_{2}}$. If there is no minimal noncommuting path in $\boldsymbol{\lambda}$ from R_{1} to R_{j}, then by commuting and cycling we have $\left(R_{1}, \ldots, R_{j-1}, R_{j+1}, \ldots, R_{n}, R_{j}^{-}\right) \in \mathcal{S}(\boldsymbol{\lambda})$ and $l\left(R_{j}^{-}\right)-r\left(R_{1}\right)<l\left(R_{j}\right)-r\left(R_{1}\right)$, so we are done by our induction hypothesis on $l\left(R_{j}\right)-r\left(R_{1}\right)$.

Therefore, there is indeed a horizontal-strip $\boldsymbol{\lambda}^{\prime}=\left(R_{1}^{\prime}, \ldots, R_{n}^{\prime}\right) \in \mathcal{S}(\boldsymbol{\lambda})$ with $l\left(R_{1}^{\prime}\right)<l\left(R_{2}^{\prime}\right)$ and $R_{1}^{\prime} \nrightarrow R_{2}^{\prime}$.

We will now strengthen the conditions on our choice of $\boldsymbol{\lambda}^{\prime}$. Consider the set

$$
\begin{equation*}
\mathcal{S}^{*}(\boldsymbol{\lambda})=\left\{\boldsymbol{\lambda}^{\prime}=\left(R_{1}^{\prime}, \ldots, R_{n}^{\prime}\right) \in \mathcal{S}(\boldsymbol{\lambda}): l\left(R_{1}^{\prime}\right)<l\left(R_{2}^{\prime}\right), R_{1}^{\prime} \leftrightarrow R_{2}^{\prime}\right\} \tag{5.49}
\end{equation*}
$$

and for $\boldsymbol{\lambda}^{\prime}=\left(R_{1}^{\prime}, \ldots, R_{n}^{\prime}\right) \in \mathcal{S}^{*}(\boldsymbol{\lambda})$, define the integer

$$
\begin{equation*}
h\left(\boldsymbol{\lambda}^{\prime}\right)=\left|\left\{3 \leqslant t \leqslant n: R_{1}^{\prime} \prec R_{t}^{\prime}, R_{2}^{\prime} \prec R_{t}^{\prime}\right\}\right| . \tag{5.50}
\end{equation*}
$$

Because we have shown that the set $\mathcal{S}^{*}(\boldsymbol{\lambda})$ is nonempty and because we have a uniform bound $h\left(\boldsymbol{\lambda}^{\prime}\right) \leqslant n-2$, we may let $\boldsymbol{\lambda}^{\prime}=\left(R_{1}^{\prime}, \ldots, R_{n}^{\prime}\right) \in \mathcal{S}^{*}(\boldsymbol{\lambda})$ be such that $h\left(\boldsymbol{\lambda}^{\prime}\right)$ is maximal, and among those, with $\left|R_{2}^{\prime}\right|$ maximal. Let $\boldsymbol{\mu}=\left(S_{1}, \ldots, S_{n}\right)$ and $\varphi: \Pi\left(\boldsymbol{\lambda}^{\prime}\right) \xrightarrow{\sim} \Pi(\boldsymbol{\mu})$, and note that again by Corollary 5.48 and Corollary 5.51 we may assume that $\boldsymbol{\mu}$ is nesting and has no strict pairs or strict sequences.

Let $i=\varphi_{1}$ and $j=\varphi_{2}$, and note that by cycling and rotating we may assume that $i<j$ and $l\left(S_{i}\right)<l\left(S_{j}\right)$, and then because $M_{i, j}(\boldsymbol{\mu})=0$, we have $l\left(S_{j}\right) \geqslant r\left(S_{i}\right)+1$ by Proposition 3.10, Parts 2 and 3. If $l\left(S_{j}\right)-r\left(S_{i}\right)=1$, then $S_{i} \leftrightarrow S_{j}$ by Proposition 3.10, Part 3, so there exists a good substitute for $(\boldsymbol{\lambda}, \boldsymbol{\mu})$ by Corollary 5.19 and we would be done. We now suppose that $l\left(S_{j}\right)-r\left(S_{i}\right) \geqslant 2$, which means that $S_{i} \leftrightarrow S_{j}$ by Proposition 3.10, Part 1, and we use induction on $l\left(S_{j}\right)-r\left(S_{i}\right)$. If there is no minimal noncommuting path in $\boldsymbol{\mu}$ from S_{i} to S_{j}, then by commuting and cycling we have $\left(S_{i}, \ldots, S_{j-1}, S_{j+1}, \ldots, S_{n}, S_{1}^{-}, \ldots, S_{j}^{-}\right) \in \mathcal{S}(\boldsymbol{\mu})$ and $l\left(S_{j}^{-}\right)-r\left(S_{i}\right)<l\left(S_{j}\right)-r\left(S_{i}\right)$, so we are done by our induction hypothesis on $l\left(S_{j}\right)-r\left(S_{i}\right)$. Therefore, we may assume that there is a minimal noncommuting path ($S_{i}=S_{i_{1}}, \ldots, S_{i_{k}}=S_{j}$) in $\boldsymbol{\mu}$ from S_{i} to S_{j}. Because $\boldsymbol{\mu}$ is nesting and $S_{i} \leftrightarrow S_{j}$, we have that $l\left(S_{i_{t+1}}\right)=r\left(S_{i_{t}}\right)+1$ for every $1 \leqslant t \leqslant k-1$ by Proposition 5.53. Also note that if there is a minimal noncommuting path in $\boldsymbol{\mu}$ from $S_{i_{t}}$ to $S_{i_{t+1}}$ for any $1 \leqslant t \leqslant k-1$, then by Proposition 5.37 either $\boldsymbol{\mu}$ has a strict sequence, contradicting our assumption, or there is $1<x<y<j$ with $l\left(S_{x}\right)=l\left(S_{j}\right)=r\left(S_{1}\right)-1=r\left(S_{y}\right)-1, S_{j} \npreceq S_{x}$, and $S_{1} \npreceq S_{y}$, contradicting that $\boldsymbol{\mu}$ is nesting by Proposition 5.52, Part 4. Therefore, there is no minimal noncommuting path in $\boldsymbol{\mu}$ from $S_{i_{t}}$ to $S_{i_{t+1}}$ for any $1 \leqslant t \leqslant k-1$,

We now make the following useful observation. For every row R_{t}^{\prime} of $\boldsymbol{\lambda}^{\prime}$ with $R_{1}^{\prime} \prec R_{t}^{\prime}$ and $R_{2}^{\prime} \prec R_{t}^{\prime}$, we have $S_{i} \prec S_{\varphi_{t}}$ and $S_{j} \prec S_{\varphi_{t}}$ and therefore by Proposition 5.2 we have

$$
\begin{equation*}
l\left(S_{\varphi_{t}}\right) \leqslant l\left(S_{1}\right)+1 \leqslant r\left(S_{1}\right)+1=l\left(S_{i_{2}}\right) \leqslant r\left(S_{i_{k-1}}\right)=l\left(S_{j}\right)-1 \leqslant r\left(S_{j}\right)-1 \leqslant r\left(S_{\varphi_{t}}\right) \tag{5.51}
\end{equation*}
$$

and therefore $S_{i_{t^{\prime}}} \prec S_{\varphi_{t}}$ for every $1 \leqslant t^{\prime} \leqslant k$.
Now suppose that there is some t with $S_{i_{k-1}} \precsim S_{t}$ and $M_{j, t}(\boldsymbol{\mu})=0$. We must have $r\left(S_{t}\right) \leqslant l\left(S_{j}\right)-1=r\left(S_{i_{k-1}}\right)$ and by Proposition 5.2, $l\left(S_{t}\right) \leqslant l\left(S_{i_{k-1}}\right)-1=r\left(S_{i_{k-2}}\right)$, so $M_{i_{k-2}, t}(\boldsymbol{\mu})>0$. Because $\boldsymbol{\lambda}$ is nesting, this means that either $S_{i_{k-2}} \prec S_{t}$ or $S_{t} \prec S_{i_{k-2}}$, but if $S_{t} \prec S_{i_{k-2}}$ we would have $M_{i_{k-2}, t}(\boldsymbol{\mu})+M_{i_{k-1}, t}(\boldsymbol{\mu})=\left|S_{t}\right|+\left|S_{i_{k-1}}\right| \geqslant\left|S_{t}\right|+1$ and the pair $\left(S_{i_{k-2}}, S_{i_{k-1}}\right)$ would be strict, a contradiction by Proposition 5.52, Part 1. Therefore, we must have $S_{i_{k-2}} \prec S_{t}$. Because there is no minimal noncommuting path in $\boldsymbol{\mu}$ from $S_{i_{k-2}}$ to $S_{i_{k-1}}$, we may cycle and use Lemma 5.5 to replace $\boldsymbol{\mu}$ with a similar horizontal-strip to assume
that $i_{k-2}=1$ and $i_{k-1}=2$, but now we would have $h(\boldsymbol{\mu})>h\left(\boldsymbol{\lambda}^{\prime}\right)$ because S_{t} is counted only by $h(\boldsymbol{\mu})$, contradicting maximality of $h\left(\boldsymbol{\lambda}^{\prime}\right)$. Therefore, we may assume that

$$
\begin{equation*}
\text { there is no } t \text { with } S_{i_{k-1}} \precsim S_{t} \text { and } M_{j, t}(\boldsymbol{\mu})=0 \text {. } \tag{5.52}
\end{equation*}
$$

Similarly, now suppose that there is some t with $S_{j} \nprec S_{t}$ and $M_{i_{k-1}, t}(\boldsymbol{\mu})=0$. Because there is no minimal noncommuting path in $\boldsymbol{\mu}$ from $S_{i_{k-1}}$ to S_{j}, we may cycle and use Lemma 5.5 to replace $\boldsymbol{\mu}$ with a similar horizontal-strip to assume that $i_{k-1}=1$ and $j=2$. Because $S_{j} \precsim S_{t}$ and $M_{i_{k-1}, t}(\boldsymbol{\mu})=0$, by Proposition 5.2, we have $l\left(S_{t}\right)=l\left(S_{j}\right)$ and $\left|S_{t}\right|>\left|S_{j}\right|$. Now if there is a minimal noncommuting path in $\boldsymbol{\mu}$ from S_{1} to S_{t}, then as before, by Proposition 5.37 either $\boldsymbol{\mu}$ has a strict sequence, contradicting our assumption, or we contradict that $\boldsymbol{\mu}$ is nesting. Therefore, there is no minimal noncommuting path in $\boldsymbol{\mu}$ from S_{1} to S_{t}, so by Lemma 5.5 we may replace $\boldsymbol{\mu}$ by a similar horizontal-strip to instead assume that $t=2$. We also note that for every row $S_{t^{\prime}}$ of $\boldsymbol{\mu}$ with $S_{1} \prec S_{t^{\prime}}$ and $S_{j} \prec S_{t^{\prime}}$, we must have $M_{t, t^{\prime}}(\boldsymbol{\mu})>0$ and therefore either $S_{t} \prec S_{t^{\prime}}$ or $S_{t^{\prime}} \prec S_{t}$. However, if $S_{t^{\prime}} \prec S_{t}$, then we would have $M_{1, t^{\prime}}(\boldsymbol{\mu})+M_{t, t^{\prime}}(\boldsymbol{\mu})=\left|S_{1}\right|+\left|S_{t^{\prime}}\right| \geqslant\left|S_{t^{\prime}}\right|+1$ and the pair $\left(S_{1}, S_{t}\right)$ would be strict, a contradiction, and therefore $S_{t} \prec S_{t^{\prime}}$. However, we now have $h(\boldsymbol{\mu}) \geqslant h\left(\boldsymbol{\lambda}^{\prime}\right)$ and $\left|S_{2}\right|>\left|S_{j}\right|=\left|R_{2}^{\prime}\right|$, contradicting either the maximality of $h\left(\boldsymbol{\lambda}^{\prime}\right)$ or the maximality of $\left|R_{2}^{\prime}\right|$. Therefore, we may assume that

$$
\begin{equation*}
\text { there is no } t \text { with } S_{j} \precsim S_{t} \text { and } M_{i_{k-1}, t}(\boldsymbol{\mu})=0 \text {. } \tag{5.53}
\end{equation*}
$$

Because there is no minimal noncommuting path in $\boldsymbol{\mu}$ from $S_{i_{k-1}}$ to S_{j}, we may use Lemma 5.5 to replace $\boldsymbol{\mu}$ by a similar horizontal-strip to assume that $j=i_{k-1}+1$. Our plan is now to apply Lemma 5.39 to the rows S_{j-1} and S_{j} to replace $\boldsymbol{\mu}$ by a similar horizontal-strip for which $l\left(S_{j}\right)$ has decreased and $r\left(S_{i}\right)$ has not changed, so that we will be done by our induction hypothesis on $l\left(S_{j}\right)-r\left(S_{i}\right)$. It remains to check the conditions of Proposition 5.41.

1. If $M_{j-1, t}(\boldsymbol{\mu})>0$ and $M_{j, t}(\boldsymbol{\mu})>0$, then because $\boldsymbol{\mu}$ is nesting we must have $S_{j-1} \prec S_{t}$ or $S_{t} \prec S_{j-1}$. If $S_{t} \prec S_{j-1}$, then $M_{j-1, t}(\boldsymbol{\mu})+M_{j, t}(\boldsymbol{\mu})=\left|S_{t}\right|+M_{j, t}(\boldsymbol{\mu}) \geqslant\left|S_{t}\right|+1$ and the pair $\left(S_{j-1}, S_{j}\right)$ would be strict, contradicting that $\boldsymbol{\mu}$ is nesting. Therefore, we must have $S_{j-1} \prec S_{t}$ and similarly we must have $S_{j} \prec S_{t}$.
2. If $M_{j-1, t}(\boldsymbol{\mu})>0$ and $M_{j, t}(\boldsymbol{\mu})=0$, then because $\boldsymbol{\mu}$ is nesting we must have $S_{j-1} \prec S_{t}$ or $S_{t} \prec S_{j-1}$, but by (5.52) we cannot have $S_{j-1} \npreceq S_{t}$, so we must have $S_{t} \prec S_{j-1}$.
3. If $M_{j-1, t}(\boldsymbol{\mu})=0$ and $M_{j, t}(\boldsymbol{\mu})>0$, then because $\boldsymbol{\mu}$ is nesting we must have $S_{j} \prec S_{t}$ or $S_{t} \prec S_{j}$, but by (5.53) we cannot have $S_{j} \preccurlyeq S_{t}$, so we must have $S_{t} \prec S_{j}$.
4. If $S_{t} \prec S_{j-1}$, then by Proposition 5.52, Part 3, we must have $M_{j, t}(\boldsymbol{\mu})=0$ and $M_{a, t}(\boldsymbol{\mu})=0$ for every $a \in A$. Moreover, if $b \in B$, then $S_{j-1} \prec S_{b}$ and therefore $S_{t} \prec S_{b}$ because by Proposition 5.52, Part 2, the relation \prec is transitive.
5. If $S_{t} \prec S_{j}$, then by Proposition 5.52, Part 3, we must have $M_{j-1, t}(\boldsymbol{\mu})=0$ and $M_{a, t}(\boldsymbol{\mu})=0$ for every $a \in A$. Moreover, if $b \in B$, then $S_{j} \prec S_{b}$ and therefore $S_{t} \prec S_{b}$ because by Proposition 5.52, Part 2, the relation \prec is transitive.

This concludes our verification of the conditions of Proposition 5.41. Therefore, the result follows by Lemma 5.39 and our induction hypothesis on $l\left(S_{j}\right)-r\left(S_{i}\right)$. This completes the proof of Lemma 3.23, and therefore our proof of Theorem 2.7.

Acknowledgements

We would like to thank Mark Haiman and the referees for their helpful comments.

References

[Ale21] P. Alexandersson. Llt polynomials, elementary symmetric functions and melting lollipops. J. Algebraic Combin., 53, 2021. doi:10.1007/s10801-019-00929-z.
[AP18] P. Alexandersson and G. Panova. Llt polynomials, chromatic quasisymmetric functions and graphs with cycles. Discrete Math., 341, 2018. doi:10.1016/j.disc. 2018.09.001.
[APCSZ21] J. Aliste-Prieto, L. Crew, S. Spirkl, and J. Zamora. A vertex-weighted tutte symmetric function, and constructing graphs with equal chromatic symmetric function. Electron. J. of Combin., 28(P2.1), 2021. doi:10.37236/10018.
[APZ14] J. Aliste-Prieto and J. Zamora. Proper caterpillars are distinguished by their chromatic symmetric function. Discrete Math., 315, 2014. doi:10.1016/j.disc. 2013.10.016.
[AS22] P. Alexandersson and R. Sulzgruber. A combinatorial expansion of vertical-strip llt polynomials in the basis of elementary symmetric functions. Adv. in Math., 400, 2022. doi:10.1016/j.aim.2022.108256.
[AU20] P. Alexandersson and J. Uhlin. Cyclic sieving, skew macdonald polynomials and schur positivity. Algebr. Comb., 3, 2020. doi:10.5802/alco. 123.
[AWvW21] F. Aliniaeifard, V. Wang, and S. van Willigenburg. Extended chromatic symmetric functions and equality of ribbon schur functions. Adv. Appl. Math., 128, 2021. doi:10.1016/j.aam.2021.102189.
$\left[B^{+}{ }^{+} 23\right]$ J. Blasiak, M. Haiman, J. Morse, A. Pun, and G. Seelinger. A proof of the extended delta conjecture. Forum of Mathematics, Pi, 11:e6, 2023. doi:10.1017/fmp. 2023. 3 .
[BTvW06] L. Billera, H. Thomas, and S. van Willigenburg. Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon schur functions. $A d v$. Math., 204, 2006. doi:10.1016/j.aim.2005.05.014.
[CM18] E. Carlsson and A. Mellit. A proof of the shuffle conjecture. J. Amer. Math. Soc., 31, 2018. doi:10.1090/jams/893.
[Cre22] L. Crew. A note on distinguishing trees with the chromatic symmetric function. Discrete Math., 2022. doi:10.1016/j.disc.2021.112682.
[CS20] L. Crew and S. Spirk1. A deletion-contraction relation for the chromatic symmetric function. Eur. J. Comb., 89, 2020. doi:10.1016/j.ejc.2020. 103143.
[Gar07] F. Gardi. The roberts characterization of proper and unit interval graphs. Discrete Math., 307, 2007. doi:10.1016/j.disc.2006.04.043.
[GH07] I. Grojnowski and M. Haiman. Affine hecke algebras and positivity of llt and macdonald polynomials. 2007.
[GP16] M. Guay-Paquet. A second proof of the shareshian-wachs conjecture, by way of a new hopf algebra. 2016. arXiv:1601.05498.
[Hag07] J. Haglund. The q,t-Catalan numbers and the space of diagonal harmonics. Amer. Math. Soc., 2007.
[Hai02] M. Haiman. Combinatorics, symmetric functions and hilbert schemes. Current Developments in Mathematics, 2002. doi:10.4310/cdm.2002.v2002.n1.a2.
[HHL05] J. Haglund, M. Haiman, and N. Loehr. A combinatorial formula for macdonald polynomials. J. Amer. Math. Soc., 18, 2005. doi:10.1090/ s0894-0347-05-00485-6.
[HHLU05] J. Haglund, M. Haiman, J. Loehr, N. Remmel, and A. Ulyanov. A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J., 126, 2005. doi:10.1215/s0012-7094-04-12621-1.
[HNY20] J. Huh, S. Nam, and M. Yoo. Melting lollipop chromatic quasisymmetric functions and schur expansion of unicellular llt polynomials. Discrete Math., 343, 2020. doi:10.1016/j.disc. 2019.111728.
[LLT97] A. Lascoux, B. Leclerc, and J-Y. Thibon. Ribbon tableaux, hall-littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys., 38(2), 1997. doi:10.1063/1.531807.
[LT00] B. Leclerc and J-Y. Thibon. Littlewood-richardson coefficients and kazhdanlusztig polynomials. Adv. Stud. Pure Math., 28, 2000. doi:10.2969/aspm/ 02810155.
[SW12] J. Shareshian and M. Wachs. Chromatic quasisymmetric functions and hessenberg varieties. Configuration Spaces, 2012. doi:10.1007/978-88-7642-431-1_20.
[SW16] J. Shareshian and M. Wachs. Chromatic quasisymmetric functions. Adv. Math., 2016. doi:10.1016/j.aim.2015.12.018.
[Tom21] F. Tom. A combinatorial schur expansion of triangle-free horizontal-strip llt polynomials. Comb. Theory, 14(1), 2021. doi:10.5070/c61055380.

[^0]: *The author was supported in part by the Natural Sciences and Engineering Research Council of Canada.

