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Abstract. We prove that two horizontal-strip LLT polynomials are equal if the associated
weighted graphs defined by the author in a previous paper are isomorphic. This provides
a sufficient condition for equality of horizontal-strip LLT polynomials and yields a well-
defined LLT polynomial indexed by a weighted graph. We use this to prove some new
relations between LLT polynomials and we explore a connection with extended chromatic
symmetric functions.
Keywords. Chromatic symmetric function, LLT polynomial, Hall–Littlewood polynomial,
interval graph, Schur function, weighted graph
Mathematics Subject Classifications. 05E05, 05E10, 05C15

1. Introduction

LLT polynomials have been studied extensively in algebraic combinatorics and representation
theory. Horizontal-strip LLT polynomials generalize the Hall–Littlewood polynomials, which
are the Frobenius series of cohomology rings of certain subsets of the flag variety [Hai02]. The
Shuffle Theorem [CM18] of Carlsson and Mellit describes an LLT expansion of the Frobenius
series of the space of diagonal harmonics. The Extended Delta Theorem of Blasiak, Haiman,
Morse, Pun, and Seelinger [BHM+23] generalizes this to an LLT expansion of an infinite series
of GLm characters using an action of the Schiffmann algebra on the space of symmetric func-
tions. LLT polynomials appear positively in an expansion of Macdonald polynomials [HHL05],
which implies that Macdonald polynomials are Schur-positive. LLT polynomials also arise in
the representation theory of the quantum affine algebra [LLT97] and of regular semisimple Hes-
senberg varieties via their connection to chromatic quasisymmetric functions [GP16, SW12].

If λ is a sequence of single cells, then the unicellular LLT polynomial Gλ(x; q) can be ex-
pressed as a sum over arbitrary colourings of a unit interval graph Γ(λ) associated to λ. Huh,
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Nam, and Yoo [HNY20] proved a combinatorial Schur expansion of Gλ(x; q) whenever Γ(λ)
is a “melting lollipop” and Alexandersson conjectured [Ale21] and then proved with Sulzgru-
ber [AS22] a combinatorial elementary symmetric function expansion ofGλ(x; q+1) in terms of
acyclic orientations of Γ(λ). An equality of unicellular LLT polynomials Gλ(x; q) = Gµ(x; q)
is equivalent [CM18] to an equality of the corresponding chromatic quasisymmetric functions
XΓ(λ)(x; q) = XΓ(µ)(x; q) introduced by Shareshian and Wachs [SW16]. Therefore, LLT poly-
nomials are intimately connected to longstanding conjectures about equalities of chromatic sym-
metric functions, which is an area of active research [APZ14, APCSZ21, Cre22].

If λ is a sequence of rows, then the horizontal-strip LLT polynomial Gλ(x; q) can be ex-
pressed as a sum over certain colourings of a unit interval graph Γ̃(λ) with some decorated
edges and Alexandersson and Sulzgruber’s result [AS22] generalizes to this setting. In [Tom21]
the author defined an alternative generalization of Γ(λ) to a weighted interval graph Π(λ). That
paper gives a combinatorial Schur expansion of Gλ(x; q) whenever Π(λ) is triangle-free and
shows that the largest power of q in Gλ(x; q) is the total edge weight of Π(λ).

The main result of this paper, Theorem 2.7, states that the horizontal-strip LLT polyno-
mial Gλ(x; q) is determined by the weighted graph Π(λ). In other words, if Π(λ) ∼= Π(µ),
then Gλ(x; q) = Gµ(x; q). In particular, this implies that if Π is a weighted graph arising
from this construction, then there corresponds a well-defined LLT polynomial GΠ(x; q). In
Section 3, we prove Theorem 2.7 modulo a technical result, Lemma 3.23, whose proof we post-
pone to Section 5. In Section 4, we explore a connection between GΠ(x; q) and the extended
chromatic symmetric functions XΠ(x) associated to weighted graphs that were defined by Crew
and Spirkl [CS20] and whose relations were considered in [AWvW21].

2. Background

A composition α is a finite sequence of positive integers α = α1 · · ·αℓ. We denote by ℓ(α) the
length of α and by convention, we set αi = 0 if i > ℓ. A partition σ is a composition that is
weakly decreasing, that is σ1 ⩾ · · · ⩾ σℓ. We also define the integer n(σ) =

∑
i(i− 1)σi. If σ

and τ are partitions with σi ⩾ τi for every i, then the corresponding skew diagram is

λ = σ/τ = {(i, j) ∈ N× N : i ⩾ 1, τi + 1 ⩽ j ⩽ σi}. (2.1)

If τ is the empty partition, we write σ instead of σ/∅. The elements of λ are called cells and
the content of a cell u = (i, j) ∈ λ is the integer c(u) = j − i. We primarily work with rows
and we assume the contents are nonnegative, so that they are skew diagrams of the form

R = a/b = {(1, j) ∈ N× N : b+ 1 ⩽ j ⩽ a} (2.2)

for some a ⩾ b ⩾ 0. We denote by l(R) = b and r(R) = a− 1 the smallest and largest contents
of cells of R. Note that l(R) is the content of the leftmost cell of R, not the length of R, which
is |R| = r(R)− l(R) + 1. We also denote by R+ = (a+1)/(b+1) and R− = (a− 1)/(b− 1)
the rows obtained by shifting R right or left respectively by one cell. A semistandard Young
tableau (SSYT) of shape λ is a function T : λ → {1, 2, 3, . . .} that satisfies Ti,j ⩽ Ti,j+1

and Ti,j < Ti+1,j , where we write Ti,j instead of T ((i, j)). A multiskew partition is a sequence
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of skew diagrams λ = (λ(1), . . . , λ(n)). We say that λ is unicellular if each λ(i) is a single cell
and in keeping with the terminology of Alexandersson and Sulzgruber [AS22], we say that λ
is a horizontal-strip if each λ(i) is a row. If λ is a horizontal-strip, we denote by λ the partition
determined by the row lengths of λ and we define n(λ) = n(λ). We denote by

SSYTλ = {T = (T (1), . . . , T (n)) : T (i) ∈ SSYTλ(i)} (2.3)

the set of sequences of SSYTs of shape λ. Two entries T (i)(u) and T (j)(v) of T with i < j form
an inversion if either

• c(u) = c(v) and T (i)(u) > T (j)(v), or

• c(u) = c(v) + 1 and T (i)(u) < T (j)(v).

We denote by inv(T ) the number of inversions of T and we define xT = x# of 1’s
1 x# of 2’s

2 · · · .
Now we define the LLT polynomial

Gλ(x; q) =
∑

T∈SSYTλ

qinv(T )xT . (2.4)

Example 2.1. The multiskew partitionλ = (4/0, 5/4, 8/5, 6/1), two SSYTsS andT of shapeλ
with their inversions marked by dashed lines, and the corresponding monomials of the LLT
polynomial Gλ(x; q) are given below. Because λ is a horizontal-strip, we draw it so that cells
of the same content are aligned vertically.

λ = T =

1 2 2 3

5

1 1 3

1 4 4 4 5

U =

4 4 4 4

3

1 1 1

2 2 2 2 2

q5x4
1x

2
2x

2
3x

3
4x

2
5 q6x3

1x
5
2x3x

4
4

The LLT polynomial G(4/0,5/4,8/5,6/1)(x; q) can be expanded in the Schur function basis as

Gλ(x; q) = q6s5431 + q6s544 + q6s5521 + 2q6s553 + q6s6331 + 2q6s6421 + (3q6 + q5)s643

+ 2q6s6511 + (4q6 + q5)s652 + (2q6 + q5)s661 + (q6 + q5)s7321 + (q6 + 2q5)s733

+ (q6 + 2q5)s7411 + (2q6 + 5q5)s742 + (2q6 + 6q5)s751 + 4q5s76 + q5s8221

+ (2q5 + q4)s8311 + (4q5 + 2q4)s832 + (5q5 + 5q4)s841 + (3q5 + 4q4)s85 + 2q4s9211

+ 3q4s922 + (7q4 + 2q3)s931 + (5q4 + 3q3)s94 + q3s(10)111 + 6q3s(10)21

+ (6q3 + q2)s(10)3 + 3q2s(11)11 + 5q2s(11)2 + 3qs(12)1 + s(13).
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LLT polynomials are symmetric functions [LLT97, Theorem 6.1] and moreover are Schur-
positive, [HHLU05, Theorem 3.1.3] [LT00] [GH07, Corollary 6.9], meaning that they can be
expressed as a linear combination of Schur functions where the coefficients are polynomials in q
with positive coefficients. Finding a combinatorial formula for this Schur expansion is a major
open problem of active research [Ale21, AP18, AS22, AU20, HNY20, Tom21].

When λ = (λ(1), . . . , λ(n)) is unicellular, we can associate to λ a labelled graph Γ(λ) with
vertices v1, . . . , vn as follows. We label the cells of λ as 1, 2, 3, . . . in reverse content reading
order, meaning in order of decreasing content and from top to bottom along constant content
lines. Then vertices vi and vj are joined by an edge if it is possible for entries in cells i and j to
form an inversion. This approach was effective in finding combinatorial formulas for unicellular
LLT polynomials [Ale21, AP18, HNY20]. Graphs arising from this construction are called unit
interval graphs and they have several equivalent characterizations [Gar07].

Example 2.2. The unicellular multiskew partitions λ = (2/1, 1/0, 1/0, 2/1, 2/1) and
µ = (1/0, 2/1, 2/1, 1/0, 2/1) are given below with their cells labelled in reverse content reading
order, along with the associated labelled graphs Γ(λ) and Γ(µ).

λ =

5

4

3

2

1
Γ(λ)

v1

v2

v3

v4

v5

µ =

3

2

5

4

1
Γ(µ)

v1

v2

v3

v4

v5

When λ is unicellular, a tableau T ∈ SSYTλ is precisely a (possibly not proper) colour-
ing κ : Γ(λ) → N and an inversion of T is an ascent of κ, namely an edge (vi, vj) ∈ E(Γ(λ))
with i < j and κ(vi) < κ(vj). Therefore, we can express Gλ(x; q) in terms of Γ(λ) as

Gλ(x; q) =
∑

κ:Γ(λ)→N
κ arbitrary

qasc(κ)xκ. (2.5)

If we restrict the sum (2.5) to proper colourings, meaning that κ(vi) ̸= κ(vj) when-
ever (vi, vj) ∈ E(Γ(λ)), then we have the chromatic quasisymmetric function XΓ(λ)(x; q). Uni-
cellular LLT polynomials and chromatic quasisymmetric functions are related by a change of
variables, namely the plethystic relationship [CM18, Proposition 3.4]

XΓ(λ)(x; q) = (q − 1)−|Γ(λ)|Gλ[x(q − 1); q], (2.6)

which in particular implies that if λ and µ are unicellular, then

XΓ(λ)(x; q) = XΓ(µ)(x; q) if and only if Gλ(x; q) = Gµ(x; q). (2.7)

For example, the unicellular multiskew partitions λ and µ from Example 2.2 have the same LLT
polynomials and their labelled unit interval graphs have the same chromatic quasisymmetric
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functions. Because of this relationship, unicellular LLT polynomials may be a fruitful approach
to the Stanley–Stembridge conjecture that chromatic symmetric functions of unit interval graphs
are e-positive, or its refinement, the Shareshian–Wachs conjecture, which asks for a combinato-
rial elementary function expansion of the chromatic quasisymmetric function.

When λ = (R1, . . . , Rn) is a horizontal-strip, one generalization of the above construction
is to include a set S of special edges that record when cells of λ are in the same row. Then we
can express the LLT polynomial in terms of this decorated graph Γ̃(λ) as

Gλ(x; q) =
∑

κ:Γ̃(λ)→N
κ(vi)⩽κ(vj) if i<j, (vi,vj)∈S

qasc(κ)xκ. (2.8)

This approach was successfully employed by Alexandersson and Sulzgruber [AS22].

Example 2.3. The horizontal-strip λ = (4/0, 5/4, 8/5, 6/1) and its associated decorated la-
belled graph Γ̃(λ) are given below.

λ =

13 12

11

10

9

8

7

6

5

4

3

2 1

Γ̃(λ)
v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

We will be interested in the following weighted graph Π(λ) that the author defined as an
alternative generalization of Γ(λ) to the horizontal-strip case.

Definition 2.4. [Tom21, Definition 3.1, Definition 3.2] Let λ = (R1, . . . , Rn) be a horizontal-
strip. For 1 ⩽ i < j ⩽ n we define the integers

M(Ri, Rj) =

{
|Ri ∩Rj| if l(Ri) ⩽ l(Rj),

|Ri ∩R+
j | if l(Ri) > l(Rj).

(2.9)

We then define a weighted graph Π(λ) whose vertices are the rows of λ. The weight of a
row Ri is the number of cells |Ri| and rows Ri and Rj with i < j are joined by an edge of
weight M(Ri, Rj). By convention, we omit edges of weight zero.

Remark 2.5. In [Tom21, Definition 3.2] the author also defined an ordering of the vertices
of Π(λ) based on the content reading order of the rightmost cells in the rows of λ. However, be-
cause our main Theorem states that the corresponding LLT polynomial does not depend on this
labelling, we will not be interested in it. Also note that if λ is unicellular, then the graph Π(λ)
is simply Γ(λ) with all vertex and edge weights one.

Example 2.6. The horizontal-strip λ = (4/0, 5/4, 8/5, 6/1) and the weighted graph Π(λ) are
given below. We have M(R1, R4) = 3, M(R2, R4) = 1, and M(R3, R4) = 2. We have also
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drawn the horizontal-strip µ = (5/4, 9/5, 7/2, 3/0), whose weighted graph Π(µ) is isomorphic
to Π(λ).

λ =

R1

R2

R3

R4

4

R1

5

R4

1

R2

3

R3

3

1

2

µ =

We can now state our main Theorem. We will state the key Lemma 3.23 in Section 3 and we
will show how it implies Theorem 2.7. We will then prove Lemma 3.23 in Section 5.

Theorem 2.7. Let λ and µ be horizontal-strips. If the weighted graphs Π(λ) and Π(µ) are
isomorphic, then the LLT polynomials Gλ(x; q) and Gµ(x; q) are equal. In other words,

if Π(λ) ∼= Π(µ), then Gλ(x; q) = Gµ(x; q). (2.10)

Example 2.8. The horizontal-strips λ = (4/0, 5/4, 8/5, 6/1) and µ = (5/4, 9/5, 7/2, 3/0)
in Example 2.6 have isomorphic weighted graphs, so it follows from Theorem 2.7
that Gλ(x; q) = Gµ(x; q).

We define a weighted graph Π to be admissible if it arises from our construction, in other
words if Π ∼= Π(λ) for some horizontal-strip λ. Then an alternative restatement of Theo-
rem 2.7 is that if Π is admissible, then there is a well-defined LLT polynomial GΠ(x; q) given
by GΠ(x; q) = Gλ(x; q), where λ is any horizontal-strip with Π ∼= Π(λ).

Theorem 2.7 justifies our choice to associate to λ this mysterious weighted graph Π(λ). We
now mention some advantages of this definition.

1. [Tom21, Theorem 4.6] If Π(λ) is triangle-free, then there is a combinatorial Schur expan-
sion of Gλ(x; q) defined purely in terms of Π(λ), but not λ itself.

2. [Tom21, Example 4.10] As an example of (1), if we let Pab(M) denote a graph consisting
of two vertices of weights a and b, joined by an edge of weight M , where we may assume
that a ⩾ b ⩾ M without loss of generality, then the Schur function expansion of the LLT
polynomial GPab(M)(x; q) can be expressed in terms of a, b, and M as

GPab(M)=
b∑

k=0

qmin{M,k}s(a+b−k)k=s(a+b)+qs(a+b−1)1+· · ·+qMs(a+b−M)M+· · ·+qMsab.

(2.11)
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3. [Tom21, Lemma 3.15] If λ and µ are horizontal-strips that differ by switching a pair of
adjacent rows, then we have

Gλ(x; q) = Gµ(x; q) if and only if Π(λ) ∼= Π(µ). (2.12)

In other words, equalities of LLT polynomials in this case are characterized by the asso-
ciated weighted graphs.

4. The graph Γ̃(λ) contains essentially the same information as the horizontal-strip λ, while
the coarser invariant Π(λ) is more useful for detecting equalities of LLT polynomials. For
example, consider λ = (2/1, 2/0) and µ = (2/0, 2/1) below.

λ =
1

2

3
Γ̃(λ) =

v1

v2

v3

µ =

1 2

3
Γ̃(µ) =

v1

v2

v3

Note that Γ̃(λ) has two normal edges and one special edge, while Γ̃(µ) has one normal
edge and one special edge. Meanwhile, we have Π(λ) ∼= Π(µ) ∼= P21(1), so by (2.11) we
have Gλ(x; q) = Gµ(x; q) = s3 + qs21.

We saw in Example 2.2 that even in the unicellular case, the converse to Theorem 2.7 does not
hold because there are horizontal-strips λ and µ with Gλ(x; q) = Gµ(x; q) but Π(λ) ≇ Π(µ).
However, we hope that such cases underlie a deep connection to equalities of chromatic sym-
metric functions, which are an area of active research [AWvW21, APZ14, APCSZ21, Cre22].
We explore this connection in Theorem 4.12 and Theorem 4.18 in Section 4.

3. Proof of Theorem 2.7

In this section we prove Theorem 2.7, modulo a technical result, Lemma 3.23, whose proof
we postpone to Section 5. The general idea is to rewrite λ and µ in a more convenient form
while preserving their weighted graphs and LLT polynomials. The following definition will be
convenient to describe the relationship between rows within a fixed horizontal-strip.

Definition 3.1. Let λ = (R1, . . . , Rn) be a horizontal-strip and 1 ⩽ i, j ⩽ n with i ̸= j. We
define Mi,j(λ) to be the number of edges in Π(λ) joining Ri and Rj , that is

Mi,j(λ) =

{
M(Ri, Rj) if i < j,

M(Rj, Ri) if i > j.
(3.1)

We abbreviate Mi,j(λ) as Mi,j if the context is clear. Note that

0 ⩽ Mi,j ⩽ min{|Ri|, |Rj|}. (3.2)
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We also take this opportunity to formally define an isomorphism of weighted graphs.

Definition 3.2. Let λ = (R1, . . . , Rn) and µ = (S1, . . . , Sn) be horizontal-strips. An isomor-
phism of weighted graphs, denoted φ : Π(λ)

∼−→ Π(µ), is a permutation

φ : {1, . . . , n} → {1, . . . , n} (3.3)

that satisfies |Ri| = |Sφi
| and Mi,j(λ) = Mφi,φj

(µ) for all i and j. The weighted graphs Π(λ)
and Π(µ) are isomorphic, denoted Π(λ) ∼= Π(µ), if there exists such an isomorphism. We say
that λ and µ are similar if Π(λ) ∼= Π(µ) and Gλ(x; q) = Gµ(x; q) and we denote by S(λ) the
set of horizontal-strips that are similar to λ.

Remark 3.3. Theorem 2.7 states that Π(λ) ∼= Π(µ) implies that Gλ(x; q) = Gµ(x; q), but until
we have proven this it will be convenient to temporarily define this concept of similarity.

Example 3.4. In Example 2.6, we have that φ : Π(λ)
∼−→ Π(µ), where φ is the permutation

given by φ1 = 2, φ2 = 1, φ3 = 4, and φ4 = 3.

Note that similarity is an equivalence relation. We now describe some operations we can
perform on a horizontal-strip while preserving similarity.

Proposition 3.5. Let λ = (R1, . . . , Rn) be a horizontal-strip.

1. Let λ+ = (R+
1 , . . . , R

+
n ) and λ− = (R−

1 , . . . , R
−
n ) be the horizontal-strips obtained

by translating all rows right by one cell or left by one cell respectively. Then we
have λ+,λ− ∈ S(λ).

2. Define the cycle of λ to be κ(λ) = (R2, . . . , Rn, R
−
1 ). Then we have κ(λ) ∈ S(λ).

3. For a sufficiently large integerN , define the rotation ofλ to beN−λ=(N−Rn, . . . , N−R1),
where N −R = {(1, N − j) : j ∈ R}. Then we have N − λ ∈ S(λ).

Remark 3.6. In (3), we take N to be sufficiently large simply because we assume that our cells
have nonnegative content. Because of (1), the precise value of N will not matter to us.

Proof of Proposition 3.5.

1. This follows directly from the definition because Π(λ) and Gλ(x; q) only depend on the
relative positions of the rows of λ.

2. This follows directly from the definition because M(Ri, Rj) = M(Rj, R
−
i ) and because

the condition for a cell u ∈ Ri for i ⩾ 2 to make an inversion with a cell v = (1, j′) ∈ R1

in λ is exactly the condition for u to make an inversion with the cell v− = (1, j′−1) ∈ R−
1

in κ(λ).
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3. It follows directly from the definition that M(N − Ri, N − Rj) = M(Rj, Ri) and
therefore Π(N − λ) ∼= Π(λ). If we restrict to a finite set of variables (x1, . . . , xk),
then by associating a tableau T = (T (1), . . . , T (n)) ∈ SSYTλ to a tableau
−T = (−T (1), . . . ,−T (n)) ∈ SSYTN−λ by setting −T

(i)
1,j = k + 1− T

(n+1−i)
1,N−j , we have

GN−λ(x1, . . . , xk; q) = Gλ(xk, . . . , x1; q) (3.4)

and because LLT polynomials are symmetric, it follows that GN−λ(x; q) = Gλ(x; q).

Example 3.7. Let λ = (4/0, 5/4, 8/5, 6/1) as in Example 2.6. The cycle κ(λ) has a negative
content, so for convenience we will translate right. Then the cycle κ(λ+) = (6/5, 9/6, 7/2, 4/0)
and the rotation 7− λ = (7/2, 3/0, 4/3, 7/4) are drawn below.

λ = κ(λ+) = 7− λ =

Definition 3.8. We say that rows R and R′ commute, denoted R ↔ R′, if we have
M(R,R′) = M(R′, R), and otherwise we write R ↮ R′.

Lemma 3.9. [Tom21, Lemma 3.15] Let λ = (R1, . . . , Rn) be a horizontal-strip. If Ri ↔ Ri+1,
then (R1, . . . , Ri+1, Ri, . . . , Rn) ∈ S(λ).

We now examine the integers Mi,j(λ) in more detail, particularly their relationship to com-
mutation. The following Proposition is a straightforward calculation.

Proposition 3.10. [Tom21, Proposition 3.8] Let λ = (R1, . . . , Rn) be a horizontal-strip and
let 1 ⩽ i, j ⩽ n. Without loss of generality, assume that l(Ri) ⩽ l(Rj).

1. If r(Ri) < l(Rj)− 1, then M(Ri, Rj) = M(Rj, Ri) = 0, so Ri ↔ Rj .

2. If l(Ri) = l(Rj) or r(Rj) ⩽ r(Ri), then M(Ri, Rj) = M(Rj, Ri) = min{|Ri|, |Rj|},
so Ri ↔ Rj .

3. Otherwise, we have l(Ri) < l(Rj) ⩽ r(Ri) + 1 ⩽ r(Rj), and

M(Ri, Rj) = r(Ri)−l(Rj)+1 and M(Rj, Ri) = r(Ri)−l(Rj)+2, so Ri ↮ Rj. (3.5)

In particular, we have

Mi,j = r(Ri)− l(Rj) + 1 + χ(i > j), (3.6)

where χ(i > j) = 1 if i > j and 0 otherwise.
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Example 3.11. The three cases of Proposition 3.10 are illustrated below. The pairs on the left
and the middle commute and the pair on the right does not. As a visual description, we have that
two rows commute if and only if they are either disjoint and separated by at least one cell, or if
one is contained in the other.

Remark 3.12. Informally, once we fix the edge weight Mi,j between two rows Ri and Rj ,
if Ri ↔ Rj , then there is some flexibility in their positions because they need only be dis-
joint (and separated by at least one cell) or one is contained in the other, while if Ri ↮ Rj , then
by (3.6) their relative positions are specifically constrained.

Corollary 3.13. Let λ = (R1, . . . , Rn) be a horizontal-strip.

1. If Ri ↔ Rj , then Mi,j is either 0 or min{|Ri|, |Rj|}. Equivalently, if
0 < Mi,j < min{|Ri|, |Rj|}, then Ri ↮ Rj .

2. If Ri ↮ Rj , then we either have l(Ri) < l(Rj) and r(Ri) < r(Rj), or we have
l(Ri) > l(Rj) and r(Ri) > r(Rj).

3. Suppose that i < j and Ri ↮ Rj . If Mi,j = 0, then l(Rj) = r(Ri) + 1, so in particular
l(Ri) < l(Rj). If Mi,j = |Ri|, then r(Rj) = r(Ri) − 1, while if Mi,j = |Rj|, then
l(Rj) = l(Ri)− 1, so in particular we have l(Rj) < l(Ri) in both cases.

Proof.

1. Assuming without loss of generality that l(Ri) ⩽ l(Rj), then all of the possibilities
are enumerated in Proposition 3.10 and we have Ri ↔ Rj only when Mi,j = 0
or min{|Ri|, |Rj|}.

2. Assuming without loss of generality that l(Ri) ⩽ l(Rj), then all of the possibilities
are enumerated in Proposition 3.10 and we have Ri ↮ Rj only when l(Ri) < l(Rj)
and l(Rj) ⩽ r(Ri) + 1 ⩽ r(Rj), so in particular r(Ri) < r(Rj).

3. By (3.5), if Mi,j = M(Ri, Rj) = 0, then if l(Rj) < l(Ri) we would have M(Rj, Ri) =
M(Ri, Rj) − 1 = −1, contradicting (3.2), so we must have l(Ri) < l(Rj) and Mi,j =
0 = r(Ri)− l(Rj) + 1. Similarly, by (3.5), if Mi,j = M(Ri, Rj) = min{|Ri|, |Rj|}, then
if l(Ri) < l(Rj) we would have M(Rj, Ri) = min{|Ri|, |Rj|} + 1, contradicting (3.2),
so we must have l(Rj) < l(Ri) and Mi,j = r(Rj)− l(Ri) + 2. The result now follows by
noting that |Ri| = r(Ri)− l(Ri) + 1 and |Rj| = r(Rj)− l(Rj) + 1.

Remark 3.14. Note that the converse to (1) does not hold. It is possible to have M(Ri, Rj) = 0
and Ri ↮ Rj as below left. However, (3) tells us that if this occurs, the higher row must be to
the right. Similarly, it is possible to have M(Ri, Rj) = min{|Ri|, |Rj|} and Ri ↮ Rj as below
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middle or below right. However, (3) tells us that if this occurs, the higher row must be to the
left.

We now show how we can use cycling and commuting to prove Theorem 2.7 in a special
case. Recall that if λ = (R1, . . . , Rn), then we have

M(λ) =
∑

1⩽i<j⩽n

M(Ri, Rj) ⩽
∑

1⩽i<j⩽n

min{|Ri|, |Rj|} = n(λ). (3.7)

Lemma 3.15. Theorem 2.7 holds if M(λ) = n(λ).

Proof. Let λ = (R1, . . . , Rn). By (3.7), we have that if M(λ) = n(λ), then M(Ri, Rj) =
min{|Ri|, |Rj|} for all 1 ⩽ i < j ⩽ n. Recall that we denote by λ the partition determined
by the row lengths of λ. We now show that the horizontal-strip H(λ) = (λ1/0, . . . , λn/0)
is similar to λ, meaning that the LLT polynomial Gλ(x; q) only depends on λ and therefore
only on the weighted graph Π(λ). By translating, we may assume without loss of generality
thatmin{l(Ri) : 1 ⩽ i ⩽ n} = 0, and suppose that l(Ra) = 0. BecauseMi,j = min{|Ri|, |Rj|}
for every i, j, we have by Proposition 3.10, Part 2 an upper bound l(Rj) ⩽ r(Ra)+1 = |Ra|, so
let us further assume that λ has

∑n
i=1 l(Ri) minimal among all horizontal-strips similar to λ.

We now claim that l(Ri)=0 for every 1⩽ i⩽n. If not, let j be such that l(Rj)⩾1 is maximal.
By Corollary 3.13, Part 3, if i< j and Ri↮Rj , then because Mi,j =min{|Ri|, |Rj|}, we must
have l(Rj)<l(Ri), contradicting maximality of l(Rj), so we must have Ri↔Rj for every i < j.
By Proposition 3.5, we can now commute and cycle to find that (R1, . . . , Rn, R

−
j ) ∈ S(λ), con-

tradicting minimality of
∑n

i=1 l(Ri). Therefore, we indeed have l(Ri) = 0 for every 1 ⩽ i ⩽ n,
so by Proposition 3.10, Part 2, we have Ri ↔ Rj for every 1 ⩽ i, j ⩽ n and by commuting once
again we have H(λ) ∈ S(λ). This completes the proof.

Example 3.16. Figure 3.1 illustrates the idea of the proof of Lemma 3.15. The row R3, which
has l(R3) maximal, commutes with all rows below, so by commuting and cycling, we can move
it to the left. Continuing in this way, the horizontal-strip λ is shown to be similar to H(4432)
on the right.

Remark 3.17. In this case whereM(λ) = n(λ), the LLT polynomialGλ(x; q) is the transformed
modified Hall–Littlewood polynomial H̃λ(x; q), which has many connections in algebraic com-
binatorics [Hag07, Hai02].

There is another useful linear relationship between LLT polynomials, which we can think
of as a deletion-contraction relation. It will be convenient for us to rearrange this relation as
follows, so that we add an edge and contract, rather than delete an edge and contract.
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λ =

R1

R2

R3

R4

H(4432) =

Figure 3.1: An example of using commuting and cycling to show that H(λ) ∈ S(λ).

Lemma 3.18. [Tom21, Lemma 3.17] Let λ = (R1, . . . , Rn) be a horizontal-strip
with l(Ri+1) > l(Ri) and Ri ↮ Ri+1. Define the horizontal-strips

λ′ = (R1, . . . , Ri+1, Ri, . . . , Rn) and (3.8)
λ′′ = (R1, . . . , Ri ∪Ri+1, Ri ∩Ri+1, . . . , Rn).

Then we have
Gλ(x; q) =

1

q
Gλ′(x; q) +

q − 1

q
Gλ′′(x; q). (3.9)

Note that by Proposition 3.10, Part 1, the condition Ri ↮ Ri+1 implies
that r(Ri) ⩾ ℓ(Ri+1)− 1, so the row Ri ∪Ri+1 makes sense.

We now describe the weighted graphs associated to these horizontal-strips λ′ and λ′′.

Lemma 3.19. [Tom21, Proposition 3.18] Let R1, R2, and R be rows with R1 ↮ R2

and l(R2) > l(R1) and let M = M(R1, R2), M1 = M(R1, R), and M2 = M(R2, R). Then

M(R2, R1) = M + 1, (3.10)
M(R1 ∩R2, R) = min{M,M1,M2}, and (3.11)
M(R1 ∪R2, R) = min{|R|,max{M1,M2,M1 +M2 −M}}. (3.12)

Remark 3.20. Lemma 3.19 describes exactly how the weighted graphs of the horizontal-strips
in (3.8) can be obtained from Π = Π(λ). The weighted graph Π′ is obtained from Π by increas-
ing the weight of the edge (Ri, Ri+1) by one. The weighted graph Π′′ is obtained from Π by re-
placingRi andRi+1 by new verticesRi∩Ri+1 andRi∪Ri+1 of weightsM and |Ri|+|Ri+1|−M
respectively, joined by an edge of weight M , and joining them to each other vertex R by edges
of weights given in (3.11) and (3.12). In particular, we have

n(λ′) = n(λ), M(λ′) = M(λ) + 1, and n(λ′′) < n(λ), (3.13)

so the relation (3.9) will allow us to perform induction on n(λ) and on n(λ)−M(λ).

Example 3.21. Let λ = (4/0, 5/4, 6/1, 8/5) and note that l(R4) > l(R3) and R3 ↮ R4.
Therefore, letting λ′ = (4/0, 5/4, 8/5, 6/1) and λ′′ = (4/0, 5/4, 8/1, 6/5), we have that

Gλ(x; q) =
1

q
Gλ′(x; q) +

q − 1

q
Gλ′′(x; q). (3.14)
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The horizontal-stripsλ, λ′, andλ′′, and their weighted graphsΠ(λ), Π(λ′), andΠ(λ′′) are given
below. We can think of Π(λ) and Π(λ′′) as a deletion and contraction of Π(λ′).

λ = λ′ = λ′′ =

4 5

1

3
3

1

1
4 5

1

3
3

1

2
4 7

1

1
3

1

1

Our strategy is to replace λ and µ by similar horizontal-strips to which we can apply (3.9).
We make the following definition.

Definition 3.22. Let λ and µ be horizontal-strips with Π(λ) ∼= Π(µ). A good substitute
for (λ,µ) is a pair of horizontal-strips (λ′,µ′), where λ′ = (R1, . . . , Rn) ∈ S(λ)
and µ′ = (S1, . . . , Sn) ∈ S(µ) satisfy

l(R1) < l(R2), R1 ↮ R2, l(S1) < l(S2), S1 ↮ S2, (3.15)

and φ1 = 1 and φ2 = 2, where φ : Π(λ′)
∼−→ Π(µ′). A single horizontal-strip λ is good if for

any horizontal-strip µ such that Π(λ) ∼= Π(µ), there is a good substitute for (λ,µ).

We now state a key Lemma. The proof is quite technical so we postpone it to Section 5.

Lemma 3.23. Let λ = (R1, . . . , Rn) be a horizontal-strip with n(λ) − M(λ) ⩾ 1. Suppose
that λ satisfies the condition that

Theorem 2.7 holds for horizontal-strips λ′ and µ′ with either (3.16)
n(λ′) < n(λ), or with n(λ′) = n(λ) and M(λ′) > M(λ).

Then λ is good.

We are now ready to prove that our key Lemma implies our main Theorem.

Proof of Theorem 2.7 assuming Lemma 3.23. We use induction on n(λ). If n(λ) = 0, then λ
has only one row and the result follows from Proposition 3.5, Part 1, so assume that n(λ) ⩾ 1
and that Theorem 2.7 holds for horizontal-strips λ′ and µ′ with n(λ′) < n(λ). We also use
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induction on n(λ) − M(λ). If n(λ) − M(λ) = 0, then the result follows from Lemma 3.15,
so assume that n(λ) − M(λ) ⩾ 1 and that Theorem 2.7 holds for horizontal-strips λ′ and µ′

with n(λ′) = n(λ) and n(λ′) −M(λ′) < n(λ) −M(λ). This is exactly the condition (3.16),
so assuming Lemma 3.23, we have that λ is good.

Now by replacingλ = (R1, . . . , Rn) andµ = (S1, . . . , Sn) by a good substitute as necessary,
we may assume that l(R1) < l(R2), R1 ↮ R2, l(S1) < l(S2), S1 ↮ S2, and φ1 = 1 and φ2 = 2,
where φ : Π(λ)

∼−→ Π(µ). Consider the horizontal-strips

λ′ = (R2, R1, R3, . . . , Rn) and λ′′ = (R1 ∪R2, R1 ∩R2, R3, . . . , Rn) (3.17)

and similarly defineµ′ andµ′′. Lemma 3.19 describes exactly how to constructΠ(λ′) andΠ(λ′′)
fromΠ(λ), and therefore we haveΠ(λ′) ∼= Π(µ′) andΠ(λ′′) ∼= Π(µ′′). By (3.13), our induction
hypothesis implies that Gλ′(x; q) = Gµ′(x; q) and Gλ′′(x; q) = Gµ′′(x; q). Therefore, by (3.9),
we have

Gλ(x; q) =
1

q
Gλ′(x; q) +

q − 1

q
Gλ′′(x; q) =

1

q
Gµ′(x; q) +

q − 1

q
Gµ′′(x; q) = Gµ(x; q).

(3.18)
This completes the proof.

4. A connection to extended chromatic symmetric functions

Theorem 2.7 tells us that if Π is an admissible weighted graph, then there is a well-defined
horizontal-strip LLT polynomial GΠ(x; q) given by setting GΠ(x; q) = GΠ(λ)(x; q), where λ
is any horizontal-strip with Π ∼= Π(λ). We now apply Theorem 2.7 by exploring a connec-
tion between GΠ(x; q) and the extended chromatic symmetric function defined by Crew and
Spirkl [CS20].

Definition 4.1. [CS20, Equation 1] Let G be a vertex-weighted graph. The extended chromatic
symmetric function of G is

XG(x) =
∑

κ:G→N
κ proper

∏
v∈G

x
w(v)
κ(v) , (4.1)

where w(v) denotes the weight of the vertex v.

Their motivation was to establish a deletion-contraction relation [CS20, Lemma 2], which
exists for the chromatic polynomial of a graph but not for the chromatic symmetric function.
Aliniaeifard, Wang, and van Willigenburg used this deletion-contraction relation to prove some
equalities of extended chromatic symmetric functions [AWvW21, Theorem 4.12, Theorem 7.3].
In this section, we will use our deletion-contraction relation in Lemma 3.18 to extend these
results to equalities of horizontal-strip LLT polynomials.

It will be convenient to first define the following operations and relations on compositions.

Definition 4.2. Let α = α1 · · ·αn and β = β1 · · · βm be compositions. The reverse of α
is αrev = αn · · ·α1. The concatenation and near-concatenation of α and β are

α · β = α1 · · ·αnβ1 · · · βm and α⊙ β = α1 · · ·αn−1(αn + β1)β2 · · · βm. (4.2)
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The composition of α and β, defined by Billera, Thomas, and van Willigenburg [BTvW06, Sec-
tion 3] is

α ◦ β = β⊙α1 · · · β⊙αn , (4.3)
where β⊙k denotes the k-fold near-concatenation of β. We say that β is a coarsening of α or
alternatively that α is a refinement of β, denoted α ≺ β, if β can be obtained from α by summing
adjacent parts. We also define the multiset M(α) = {λ(β) : α ≺ β}, where λ(β) denotes the
partition determined by rearranging the parts of β in weakly decreasing order.

There is a bijection between the set CN of compositions α with sum N and subsets
of {1, . . . , N−1} given by taking the partial sums of α, other than N itself. Under this bijection,
a coarsening corresponds to a subset so the partially ordered set (CN ,≺) is (anti-)isomorphic to
the boolean lattice BN−1. In particular, by Möbius inversion, if A is an abelian group
and f, g : CN → A, then

f(α) =
∑
α≺β

g(β) if and only if g(α) =
∑
α≺β

(−1)ℓ(α)−ℓ(β)f(β). (4.4)

Example 4.3. Consider the compositions α = 21231, β = 23121, δ = 12, and γ = 21. We
have that δrev = γ,

δ ◦ γ = γ⊙1 · γ⊙2 = γ · (γ ⊙ γ) = 21 · (21⊙ 21) = 21 · 231 = 21231 = α, and (4.5)
γ ◦ γ = γ⊙2 · γ⊙1 = (γ ⊙ γ) · γ = (21⊙ 21) · 21 = 231 · 21 = 23121 = β. (4.6)

Some coarsenings of α include 3231, obtained by summing the first two parts, and 54, obtained
by summing the first three parts and the last two parts. We have that

M(α) =

{
32211, 5211, 4221, 3321, 3321, 62, 621,
531, 531, 432, 432, 81, 72, 63, 54, 9

}
= M(β). (4.7)

Billera, Thomas, and van Willigenburg found the following characterization of when we
have M(α) = M(β) in terms of their operation ◦.

Theorem 4.4. [BTvW06, Theorem 4.1] Let α and β be compositions. We have M(α) = M(β)
if and only if there are factorizations

α = δ(1) ◦ · · · ◦ δ(k) and β = γ(1) ◦ · · · ◦ γ(k) (4.8)

so that every γ(i) is either δ(i) or δ(i) rev.

Example 4.5. We saw that the compositions α and β from Example 4.3 can be factorized
as α = δ ◦ γ and β = δrev ◦ γ, so it follows from Theorem 4.4 that M(α) = M(β).

Their motivation was to classify equalities of ribbon Schur functions.

Definition 4.6. Let α be a composition. The ribbon Schur function rα(x) is the skew Schur
function indexed by the skew diagram whose i-th row has αi cells and where adjacent rows over-
lap in exactly one column. When α has a single part k, then rα(x) is the complete homogeneous
symmetric function hk(x). If λ = λ1 · · ·λℓ is a partition, we also set hλ(x) = hλ1(x) · · ·hλℓ

(x).
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Theorem 4.7. [BTvW06, Equation 2.2, Proposition 2.1, Theorem 2.6] The ribbon Schur func-
tions satisfy the relation

rα(x)rβ(x) = rα·β(x) + rα⊙β(x). (4.9)
By iterating (4.9), we have

hλ(α)(x) = rα1(x) · · · rαℓ
(x) =

∑
α≺β

rβ(x) (4.10)

and therefore, by (4.4), we have

rα(x) =
∑
α≺β

(−1)ℓ(α)−ℓ(β)hλ(β)(x) =
∑

λ∈M(α)

(−1)ℓ(α)−ℓ(λ)hλ(x). (4.11)

In particular, because the hλ(x) are linearly independent, we have rα(x) = rβ(x) if and only
if M(α) = M(β).

Aliniaeifard, Wang, and van Willigenburg found a similar result for the extended chromatic
symmetric functions of vertex-weighted paths. These graphs can be indexed by compositions.

Definition 4.8. Let α = α1 · · ·αn be a composition. Define Pα to be the weighted graph
with vertices {v1, . . . , vn} where vi has weight αi, and with edges (vi, vi+1) of weight one
for 1 ⩽ i ⩽ n − 1. When α has a single part k, then the extended chromatic symmetric
function XPk

(x) is the power sum symmetric function pk(x). If λ = λ1 · · ·λℓ is a partition, we
also set pλ(x) = pλ1(x) · · · pλℓ

(x).

Proposition 4.9. Let α = α1 · · ·αn be a composition of N and consider the horizontal-strip
λα = (R1, . . . , Rn), where Ri = (

∑n−i+1
j=1 αj)/(

∑n−i
j=1 αj). Then Π(λα) ∼= Pα.

Proof. We have that |Ri|=αn−i+1 is the weight of vn−i+1, M(Ri, Ri+1)=r(Ri+1)−l(Ri)+2=1,
and M(Ri, Rj) = 0 for j ⩾ i+ 2.

Example 4.10. Let α = 21231 and β = 23121 as in Example 4.3. The horizontal-strips
λα = (9/8, 8/5, 5/3, 3/2, 2/0) and λβ = (9/8, 8/6, 6/5, 5/2, 2/0) and the paths Pα and Pβ

are given below. Because the (nonzero) edge weights are all one, they are not written.

λα = λβ =

2 1 2 3 1 2 3 1 2 1



combinatorial theory 3 (3) (2023), #10 17

Theorem 4.11. [AWvW21, Equation 2, Equation 3, Theorem 4.12] The extended chromatic
symmetric functions satisfy the relation

XPα(x)XPβ
(x) = XPα·β(x) +XPα⊙β

(x). (4.12)

By iterating (4.12), we have

pλ(α)(x) = XPα1
(x) · · ·XPαℓ

(x) =
∑
α≺β

XPβ
(x) (4.13)

and therefore, by (4.4), we have

XPα(x) =
∑
α≺β

(−1)ℓ(α)−ℓ(β)pλ(β)(x) =
∑

λ∈M(α)

(−1)ℓ(α)−ℓ(λ)pλ(x). (4.14)

In particular, because the pλ(x) are linearly independent, we have XPα(x) = XPβ
(x) if and

only if M(α) = M(β).

We now show the analogous result for horizontal-strip LLT polynomials of vertex-weighted
paths.

Theorem 4.12. The horizontal-strip LLT polynomials satisfy the relation

GPα(x; q)GPβ
(x; q) =

1

q
GPα·β(x; q) +

q − 1

q
GPα⊙β

(x; q). (4.15)

By iterating (4.15), we have

hλ(α)(x) = GPα1
(x; q) · · ·GPαℓ

(x; q) =
∑
α≺β

(q − 1)ℓ(α)−ℓ(β)

qℓ(α)−1
GPβ

(x; q) (4.16)

and rearranging, we have

qℓ(α)−1(q − 1)−ℓ(α)hλ(α)(x) =
∑
α≺β

(q − 1)−ℓ(β)GPβ
(x; q). (4.17)

Therefore, by (4.4), we have

(q − 1)−ℓ(α)GPα(x; q) =
∑
α≺β

qℓ(β)−1(q − 1)−ℓ(β)hλ(β)(x) (4.18)

and rearranging again, we have

GPα(x; q) =
∑
α≺β

qℓ(β)−1(q−1)ℓ(α)−ℓ(β)hλ(β)(x) =
∑

λ∈M(α)

qℓ(λ)−1(q−1)ℓ(α)−ℓ(λ)hλ(x). (4.19)

In particular, because the hλ(x) are linearly independent, we have GPα(x; q) = GPβ
(x; q) if

and only if M(α) = M(β).
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Proof. We need only prove the first statement (4.15). Let λα = (R1, . . . , Rn) and
λβ = (S1, . . . , Sm) be the horizontal-strips defined in Proposition 4.9. Suppose that α has
sum N and consider the horizontal-strips

λ = (N + S1, . . . , N + Sm−1, R1, N + Sm, R2, . . . , Rn), (4.20)
λ′ = (N + S1, . . . , N + Sm−1, N + Sm, R1, R2 . . . , Rn), and
λ′′ = (N + S1, . . . , N + Sm−1, (N + Sm−1) ∪R1, (N + Sm−1) ∩R1, R2, . . . , Rn).

Note that λ was constructed by translating λβ , concatenating, and switching rows
(Rt, N + St′) with (t, t′) ̸= (1,m), which commute by Proposition 3.10, Part 1 because
ℓ(N + St′) > r(Rt) + 1. Therefore, we have that Π(λ) is the disjoint union of Pα and Pβ

and so Gλ(x; q) = GPα(x; q)GPβ
(x; q). Lemma 3.19 describes exactly how the weighted

graphs Π(λ′) and Π(λ′′) are constructed and we see that Π(λ′) ∼= Pα·β and Π(λ′′) ∼= Pα⊙β .
Because ℓ(N +Sm) = r(R1)+1 > l(R1), we have R1 ↮ (N +Sm) by Proposition 3.10, Part 3
and now (4.15) follows from Lemma 3.18.

We take a moment to summarize these results.

Corollary 4.13. Let α and β be compositions. The following are equivalent.

1. M(α) = M(β)

2. α = δ(1) ◦ · · · ◦ δ(k) and β = γ(1) ◦ · · · ◦ γ(k), with every γ(i) = δ(i) or δ(i) rev

3. rα(x) = rβ(x)

4. XPα(x) = XPβ
(x)

5. GPα(x; q) = GPβ
(x; q)

Proof. We have (1) ⇐⇒ (2) by Theorem 4.4, (1) ⇐⇒ (3) by Theorem 4.7, (1) ⇐⇒ (4)
by Theorem 4.11, and (1) ⇐⇒ (5) by Theorem 4.12.

Aliniaeifard, Wang, and van Willigenburg generalize Theorem 4.11 to the following con-
struction.

Definition 4.14. [AWvW21, Definition 7.1] Let G and H be vertex-weighted graphs with dis-
tinguished (not necessarily distinct) vertices aG, zG ∈ G and aH , zH ∈ H . The concatenation
of G and H , denoted G ·H , is the disjoint union of G and H with an edge joining zG and aH .
The near-concatenation of G and H , denoted G⊙H , is the graph G ·H with the edge (zG, aH)
contracted. If α = α1 · · ·αn is a composition, the composition of α and G is the graph

α ◦G = G⊙α1 · · ·G⊙αn , (4.21)

where G⊙k denotes the k-fold near-concatenation of G.



combinatorial theory 3 (3) (2023), #10 19

Example 4.15. For any composition α, we have α ◦ P1
∼= Pα. For G = P121 with a = v1

and z = v2, the graphs 12 ◦G and 21 ◦G are given below.

1 2

1

1 3

1

2

1

a1 z1 a2 z2, a3 z3

1 3

1

2

1

1 2

1

a1 z1, a2 z2 a3 z3

Note that it follows from the definition that

(α · β) ◦G = (α ◦G) · (β ◦G) and (α⊙ β) ◦G = (α ◦G)⊙ (β ◦G). (4.22)

Theorem 4.16. [AWvW21, Theorem 7.3] Let G be a vertex-weighted graph with distinguished
vertices a and z. If M(α) = M(β), then XPα◦G(x) = XPβ◦G(x). Moreover, if G is simple and
connected, then the converse holds.

We prove a similar result for horizontal-strip LLT polynomials, but we require a condition
on the distinguished vertices to ensure that the resulting weighted graphs be admissible. Recall
that content reading order is the total ordering on cells by increasing content and from bottom
to top along constant content lines.

Definition 4.17. Let Π = Π(λ) be an admissible weighted graph. Let a and z be the vertices
corresponding to the rows containing the first and last cells of λ in content reading order. Then
we define concatenation, near-concatenation, and composition as in Definition 4.14 with respect
to these distinguished vertices a and z.

Theorem 4.18. Let Π = Π(λ) be an admissible weighted graph. For any composition α, the
weighted graph α ◦ Π is admissible, and if M(α) = M(β), then Gα◦Π(x; q) = Gβ◦Π(x; q).

Proof. LetΠ1 = Π(λ) andΠ2 = Π(µ) be admissible weighted graphs. We first show thatΠ1·Π2

and Π1⊙Π2 are admissible, which proves the first statement. By cycling and translating, we may
assume without loss of generality that λ = (R1, . . . , Rn) has a unique cell u ∈ R1 of maximal
content N − 1 and µ = (S1, . . . , Sm) has a unique cell v ∈ Sm of minimal content 0. Then
by translating µ and concatenating, we can consider the horizontal-strip (R1, . . . , Rn, N + S1,
. . . , N+Sm), whose weighted graph is the disjoint unionΠ1⊔Π2. Consider the horizontal-strips

λ = (N + S1, . . . , N + Sm−1, R1, N + Sm, R2, . . . , Rn), (4.23)
λ′ = (N + S1, . . . , N + Sm−1, N + Sm, R1, R2 . . . , Rn), and
λ′′ = (N + S1, . . . , N + Sm−1, (N + Sm−1) ∪R1, (N + Sm−1) ∩R1, R2, . . . , Rn).

Note that λ was constructed by switching rows (Rt, N + St′) with (t, t′) ̸= (1,m), which
commute by Proposition 3.10, Part 1 because ℓ(N + St′) > r(Rt) + 1. Therefore, we have
that Π(λ) ∼= Π1 ⊔ Π2 and so Gλ(x; q) = GΠ1(x; q)GΠ2(x; q). Lemma 3.19 describes exactly
how the weighted graphs Π(λ′) and Π(λ′′) are constructed and we see that Π(λ′) ∼= Π1 · Π2
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and Π(λ′′) ∼= Π1 ⊙ Π2, so indeed these weighted graphs are admissible. Because
ℓ(N + Sm) = r(R1) + 1 > l(R1), we have R1 ↮ (N + Sm) by Proposition 3.10, Part 3
and now by Lemma 3.18 we have

GΠ1(x; q)GΠ2(x; q) =
1

q
GΠ1·Π2(x; q) +

q − 1

q
GΠ1⊙Π2(x; q). (4.24)

Therefore, by (4.22), for compositions α and β, the horizontal-strip LLT polynomials satisfy the
relation

Gα◦Π(x; q)Gβ◦Π(x; q) =
1

q
G(α·β)◦Π(x; q) +

q − 1

q
G(α⊙β)◦Π(x; q). (4.25)

By iterating (4.25), we have

GΠ⊙α1 (x; q) · · ·GΠ⊙αℓ (x; q) =
∑
α≺β

(q − 1)ℓ(α)−ℓ(β)

qℓ(α)−1
Gβ◦Π(x; q) (4.26)

and rearranging, we have

qℓ(α)−1(q − 1)−ℓ(α)

ℓ∏
i=1

GΠ⊙αi (x; q) =
∑
α≺β

(q − 1)−ℓ(β)Gβ◦Π(x; q). (4.27)

Therefore, by (4.4), we have

(q − 1)−ℓ(α)Gα◦Π(x; q) =
∑
α≺β

qℓ(β)−1(q − 1)−ℓ(β)

ℓ∏
i=1

GΠ⊙βi (x; q) (4.28)

and rearranging again, we have

Gα◦Π(x; q) =
∑
α≺β

qℓ(β)−1(q − 1)ℓ(α)−ℓ(β)

ℓ∏
i=1

GΠ⊙βi (x; q) (4.29)

=
∑

λ∈M(α)

qℓ(λ)−1(q − 1)ℓ(α)−ℓ(λ)

ℓ∏
i=1

GΠ⊙λi (x; q).

In particular, if M(α) = M(β), then Gα◦Π(x; q) = Gβ◦Π(x; q).

5. Proof of Lemma 3.23

In this section we prove Lemma 3.23, which completes the proof of Theorem 2.7. The general
idea will be to use rotating, cycling, and commuting to move rows into the desired position. We
will be able to do this unless there is a noncommuting path, which is a concept we will introduce
in Definition 5.4. In Lemma 5.15 and Lemma 5.17, we will describe the structure of a minimal
noncommuting path very precisely, which will allow us to rule out several cases. We begin with
the following definition, which expresses a relationship between rows that will be convenient to
consider.
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Definition 5.1. Let λ = (R1, . . . , Rn) be a horizontal-strip. We write Ri ≺ Rj if Mi,j = |Ri|
and Ri ⊀ Rj otherwise. We also write Ri ⋨ Rj to mean that Ri ≺ Rj and Rj ⊀ Ri.

Proposition 5.2. Let λ = (R1, . . . , Rn) be a horizontal-strip.

1. Suppose that i < j. Then we have Ri ≺ Rj if and only if either Ri ⊆ Rj or Ri ⊆ R+
j .

2. Suppose that i > j. Then we have Ri ≺ Rj if and only if either Ri ⊆ Rj or Ri ⊆ R−
j .

3. We have Ri ≺ Rj and Ri ↔ Rj if and only if Ri ⊆ Rj .

Proof.

1. If Ri ≺ Rj , then by definition we have

Mi,j = |Ri| =

{
|Ri ∩Rj| if l(Ri) ⩽ l(Rj),

|Ri ∩R+
j | if l(Ri) > l(Rj),

(5.1)

and therefore we must haveRi⊆Rj orRi⊆R+
j . Conversely, ifRi⊆R+

j , then l(Ri)>l(Rj)
and Mi,j = |Ri| by Proposition 3.10, Part 2, while if Ri ⊈ R+

j and Ri ⊆ Rj , then
l(Ri) = l(Rj) and again Mi,j = |Ri| by Proposition 3.10, Part 2.

2. This follows from the previous part by considering a rotation of λ.

3. If Ri⊆Rj , then Ri≺Rj by the previous parts and we have l(Rj)⩽ l(Ri)⩽r(Ri)⩽r(Rj),
so Ri ↔ Rj by Proposition 3.10, Part 2. Conversely, if i < j, Ri ≺ Rj , and Ri ⊈ Rj ,
then by Part 1 we have Ri ⊆ R+

j , so l(Rj) < l(Ri) ⩽ r(Rj) + 1 ⩽ r(Ri) and Ri ↮ Rj

by Proposition 3.10, Part 3. The case where i > j follows by rotating.

Example 5.3. Let λ = (R1, R2, R3) = (7/4, 6/3, 5/0) as in the example below. We have
M(R1, R2) = 3 = |R1| = |R2|, so R1 ≺ R2 and R2 ≺ R1. We have M(R1, R3) = 2 < |R1|,
so R1 ⊀ R3, and we have M(R2, R3) = 3 = |R2| < |R3|, so R2 ⋨ R3.

λ =

R1

R2

R3

Informally, we can think of the relation Ri ≺ Rj as being very similar to the relation Ri ⊆ Rj ,
except that we may need to shift a row by one cell. Because of this possible shift, the relation ≺
is not transitive. In the above example, we have R1 ≺ R2 and R2 ≺ R3, but R1 ⊀ R3.

The following concept will be important to define the potential obstruction to commuting.

Definition 5.4. A sequence of n ⩾ 3 rows (R1, . . . , Rn) is a noncommuting path from R1 to Rn

if Ri ↮ Ri+1 for every 1 ⩽ i ⩽ n − 1. A noncommuting path is minimal if there is no
subsequence of rows (R1 = Ri1 , Ri2 , . . . , Rik = Rn) with i1 < i2 < · · · < ik and 3 ⩽ k < n
that forms a noncommuting path from R1 to Rn.
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In particular, if (R1, . . . , Rn) is a minimal noncommuting path, then we have Ri ↔ Rj for
every i, j with 1 < |j − i| < n− 1. Because we require a noncommuting path to have length at
least 3, we cannot conclude that R1 ↔ Rn in a minimal noncommuting path.

Our next Lemma shows that, given two rows Ri and Rj of λ with i < j, either there is a
minimal noncommuting path in λ from Ri to Rj , or we may assume that j = i+ 1.

Lemma 5.5. Let λ = (R1, . . . , Rn) be a horizontal-strip and let 1 ⩽ i < j ⩽ n. Then one of
the following holds.

1. There is a minimal noncommuting path (Ri = Ri1 , . . . , Rik = Rj) in λ.

2. There is a horizontal-strip µ = (S1, . . . , Sn) ∈ S(λ) and an isomorphism of weighted
graphs φ : Π(λ)

∼−→ Π(µ) such that l(Sφi
) = l(Ri), l(Sφj

) = l(Rj), and φj = φi + 1.

Proof. We use induction on j − i. If j − i = 1, then the second possibility holds by sim-
ply taking λ = µ, so assume that j − i ⩾ 2. If Rj ↔ Rj−1, then by commuting we have
(R1, . . . , Rj, Rj−1, . . . , Rn) ∈ S(λ) and we are done by our induction hypothesis on j − i, so
we may assume that Rj ↮ Rj−1. Similarly, if Rj−1 ↔ Rt for every i ⩽ t ⩽ j − 2, then by
commuting we would have (R1, . . . , Rj−1, Ri, . . . , Rj, . . . , Rn) ∈ S(λ) and we are again done
by induction. So we may assume that Rj−1 ↮ Rt for some i ⩽ t ⩽ j − 2, and continuing in
this way there must be a noncommuting path in λ from Ri to Rj . Finally, if this noncommuting
path is not minimal, then it contains a minimal one.

Examples of minimal noncommuting paths are given in Figure 5.1. Informally, our next
goal is to show that all minimal noncommuting paths look like these examples. Specifically, our
goal is to prove Lemma 5.15, which describes what a minimal noncommuting path may look
like, and Lemma 5.17, which describes the extent to which our weighted graph determines the
structure of a minimal noncommuting path. This will allow us to prove Corollary 5.19, which
proves Lemma 3.23 in many cases. We will first prove some elementary Propositions.

Proposition 5.6. Let λ = (R1, . . . , Rn) be a horizontal-strip.

1. Suppose that Ri ↮ Rj , Rj ↮ Rk, Ri ↔ Rk, and that the integers l(Rj) − l(Ri) and
l(Rk)− l(Rj) have the same sign. Then Mi,k = 0.

2. Suppose that Ri ↮ Rj , Rj ↮ Rk, Ri ↔ Rk, and that the integers l(Rj) − l(Ri) and
l(Rk)− l(Rj) have opposite signs. Then Ri ≺ Rk or Rk ≺ Ri.

3. Suppose that Ri ↔ Rj , Ri ↔ Rk, and Rj ↮ Rk. Then Rj ≺ Ri if and only if Rk ≺ Ri.

Note that in (1) and (2), because Ri ↮ Rj and Rj ↮ Rk, the integers l(Rj) − l(Ri)
and l(Rk)− l(Rj) are nonzero by Proposition 3.10, Part 2.
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Figure 5.1: Some examples of minimal noncommuting paths.
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Proof of Proposition 5.6.

1. Without loss of generality, we may assume that l(Ri) < l(Rj) < l(Rk), and then becau-
se Ri ↮ Rj and Rj ↮ Rk, by Corollary 3.13, Part 2, we must have r(Ri)<r(Rj)<r(Rk)
as well. But now we cannot have Ri ⊆ Rk or Rk ⊆ Ri, so by Proposition 5.2, Part 3,
we cannot have Ri ≺ Rk or Rk ≺ Ri. Therefore, because Ri ↔ Rk, by Corollary 3.13,
Part 1, we must have Mi,k = 0.

2. By rotating, we may assume without loss of generality that l(Ri) ⩽ l(Rj) − 1
and l(Rk) ⩽ l(Rj)− 1. Because Ri ↮ Rj and Rk ↮ Rj , by Proposition 3.10, Part 1, we
have r(Ri) ⩾ l(Rj)−1 and r(Rk) ⩾ l(Rj)−1. But now Mi,k > 0 and because Ri ↔ Rk,
we have by Corollary 3.13, Part 1, that Ri ≺ Rk or Rk ≺ Ri.

3. By symmetry, it suffices to prove that Rj ≺ Ri implies Rk ≺ Ri. Suppose that Rj ≺ Ri,
and then because Ri ↔ Rj , by Proposition 5.2, Part 1, we have Rj ⊆ Ri, that
is l(Ri) ⩽ l(Rj) ⩽ r(Rj) ⩽ r(Ri). Suppose that l(Rk) < l(Ri). By Proposition 3.10
Parts 1 and 2, if r(Rk) < l(Ri)− 1 ⩽ l(Rj)− 1, then Rj ↔ Rk, if l(Ri)− 1 ⩽ r(Rk) ⩽
r(Ri) − 1, then Ri ↮ Rk, and if r(Rk) ⩾ r(Ri) ⩾ r(Rj), then again Rj ↔ Rk, a con-
tradiction in all cases, so we must have l(Rk) ⩾ l(Ri). Similarly, by rotating, we must
have r(Rk) ⩽ r(Ri), so we have Rk ⊆ Ri and Rk ≺ Ri.

Proposition 5.7. Let λ = (R1, . . . , Rn) be a minimal noncommuting path.

1. If Ri ≺ Rj and Rj ≺ Ri for some j ⩾ i + 2, then we must have n = 3 or n = 4
and j = i+ 2. In particular, if n ⩾ 5, then Ri ≺ Rj implies that in fact Ri ⋨ Rj .

2. If Rj ≺ Ri for some j ⩾ i + 2, then Rk ≺ Ri for every k ⩾ i + 2, with the possible
exception of k = n if i = 1. Similarly, if Rj ≺ Ri for some j ⩽ i − 2, then Rk ≺ Ri for
every k ⩽ i− 2, with the possible exception of k = 1 if i = n.

3. Suppose that Rj ⋨ Ri for some i ⩾ j + 2, that i is minimal with these two properties,
and that i ̸= n if j = 1. Then either l(Ri−1) > · · · > l(Rj) and l(Ri) < l(Ri−1),
or l(Ri−1) < · · · < l(Rj) and l(Ri) > l(Ri−1).

Remark 5.8. Figure 5.8 shows that if n ⩽ 4, then it is possible to have a minimal noncommuting
path with R1 ≺ R3 and R3 ≺ R1. If n ⩾ 5, then this will not happen because there will be
some Rt ↮ Rt′ with t′ ⩾ t + 2 and (t, t′) ̸= (1, n), contradicting minimality. Informally, (2)
states that if we are contained in Ri, then we must remain stuck in Ri and (3) states that if Rj is
contained in some minimal Ri, then we must move in the same direction until Ri.

Proof of Proposition 5.7.

1. Because j ⩾ i + 2, we have Ri ↔ Rj by minimality and therefore Ri = Rj by Propo-
sition 5.2. Now Ri+1 ↮ Rj , so by minimality of the noncommuting path we must
have j = i + 2. Similarly, if i ⩾ 2, then Ri−1 ↮ Rj , so we must then have i = 2
and j = n = 4; if j ⩽ n− 1, then Ri ↮ Rj+1, so we must have i = 1 and j = 3 = n− 1
so again n = 4; and otherwise we have i = 1 and j = 3 = n.
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Figure 5.2: A minimal noncommuting path with R1 ≺ R3 and R3 ≺ R1.

2. If i+2 ⩽ k ⩽ n−1, Rk ≺ Ri, and k+1 ̸= n in the case of i = 1, then because Ri ↔ Rk,
Ri ↔ Rk+1, and Rk ↮ Rk+1, by Proposition 5.6, Part 3, we have Rk ≺ Ri if and only
if Rk+1 ≺ Ri, so the first statement follows by induction on k and the second statement
follows by rotating.

3. Recall that becauseRj ≺ Ri andRj ↔ Ri, by Proposition 5.2 we must have l(Ri) ⩽ l(Rj)
and r(Ri) ⩾ r(Rj). Suppose that either l(Rj+1) > l(Rj) and l(Rt+1) < l(Rt) for some
minimal j + 1 ⩽ t ⩽ i − 2, or l(Rj+1) < l(Rj) and l(Rt+1) > l(Rt) for some mini-
mal j + 1 ⩽ t ⩽ i− 2, so in particular, n ⩾ 5. Then by Proposition 5.6, Part 2, we have
either Rt−1 ≺ Rt+1 or Rt+1 ≺ Rt−1. If Rt−1 ≺ Rt+1, then by the previous two parts we
have Rj ⋨ Rt+1, contradicting minimality of i. If Rt+1 ≺ Rt−1, then by the previous two
parts we have Ri ⋨ Rt−1, but now by Proposition 5.2, Part 3, we have Rj ⊊ Ri ⊊ Rt−1,
so Rj ↔ Rt−1, t − 1 ⩾ j + 2, and Rj ⋨ Rt−1, again contradicting minimality of i.
Therefore, we must have either l(Ri−1) > · · · > l(Rj) and l(Ri) ⩽ l(Rj) < l(Ri−1),
or l(Ri−1) < · · · < l(Rj) and r(Ri) ⩾ r(Rj) > r(Ri−1), so l(Ri) > l(Ri−1) by Corol-
lary 3.13, Part 2.

Proposition 5.9. Let λ = (R1, . . . , Rn) be a horizontal-strip with R1 ↮ R2 and
let µ = (S1, . . . , Sn) be a horizontal-strip with φ : Π(λ)

∼−→ Π(µ). Let i = φ1 and j = φ2.
If l(R2) > l(R1), also assume that l(Sj) > l(Si). Then

l(Sj)− l(Si) ⩾ l(R2)− l(R1) with equality only if i < j. (5.2)

Remark 5.10. Informally, Proposition 5.9 states that the leftmost possible position of Sj , given
the weighted graph, occurs when Sj is above Si and Si ↮ Sj . The following example demon-
strates the necessity of the hypothesis that if l(R2) > l(R1), then l(Sj) > l(Si).

λ =
R1

R2

µ =

Si

Sj

Proof of Proposition 5.9. We calculate directly, using (3.6) and noting that |R|=r(R)−l(R)+1.
If l(R2) < l(R1), then the statement holds unless l(Sj) < l(Si), and because R1 ↮ R2, we have
by Corollary 3.13, Part 3, that M1,2(λ) = Mi,j(µ) > 0. By Proposition 3.10, Parts 2 and 3, we
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have M1,2(λ) = r(R2)− l(R1)+ 2 and we either have Mi,j(µ) = r(Sj)− l(Si)+ 1+χ(i < j),
or Mi,j(µ) = min{|Si|, |Sj|} ⩽ r(Sj)− l(Si) + 1 + χ(i < j). Therefore we have

l(Sj)− l(Si) = r(Sj)− |Sj|+ 1− l(Si) ⩾ Mi,j(µ)− |Sj| − χ(i < j) (5.3)
⩾ M1,2(λ)− |R2| − 1 = r(R2)− |R2|+ 1− l(R1) = l(R2)− l(R1),

with equality only if i < j.
Similarly, if l(R2) > l(R1), then by hypothesis we have l(Sj) > l(Si), and becauseR1↮R2,

we have by Corollary 3.13, Part 3, that Mi,j(µ) < min{|Si|, |Sj|}. By Proposition 3.10, Parts 1
and 3, we have M1,2(λ) = r(R1)− l(R2) + 1 and we either have

Mi,j(µ) = r(Si)− l(Sj) + 1 + χ(i < j) or Mi,j(µ) = 0 ⩾ r(Si)− l(Sj) + 1 + χ(i < j).

Therefore we have

l(Sj)− l(Si) = l(Sj)− r(Si)− 1 + |Si| ⩾ |Si| −Mi,j(µ) + χ(i > j) (5.4)
⩾ |R1| −M1,2(λ) = l(R2)− r(R1)− 1 + |R1| = l(R2)− l(R1),

with equality only if i < j.

Proposition 5.11. Let λ = (R1, . . . , Rn) be a horizontal-strip with l(R1)<l(R3) and R1↮R3.
Let µ = (S1, . . . , Sn) be a horizontal-strip and φ : Π(λ)

∼−→ Π(µ) such that φ1 < φ3,
l(Sφ1) < l(Sφ3), and Sφ1 ↮ Sφ3 . Then if l(R2) > l(R1) and R1 ↮ R2, then l(Sφ2) > l(Sφ1).
Similarly, if l(R3) > l(R2) and R2 ↮ R3, then l(Sφ3) > l(Sφ2).

Remark 5.12. Informally, Proposition 5.11 describes the extent to which rows R1 and R3

with l(R1) < l(R3) and R1 ↮ R3, given the weighted graph data, determine the relative hori-
zontal position of another row R2.

Proof of Proposition 5.11. We first suppose for a contradiction that l(R2)>l(R1) andR1↮R2,
but l(Sφ2) ⩽ l(Sφ1). Because l(R2) > l(R1) and R1 ↮ R2, we have by Corollary 3.13,
Part 2, that r(R2) > r(R1) and by Corollary 3.13, Part 3, that M1,2(λ) < min{|R1|, |R2|}.
Therefore, we must have Mφ1,φ2(µ) < min{|Sφ1|, |Sφ2 |} and by Proposition 3.10, Part 2, we
have that l(Sφ2) < l(Sφ1) < l(Sφ3) and r(Sφ2) < r(Sφ1) < r(Sφ3). In particular, we have
Mφ2,φ3(µ) < min{|Sφ2|, |Sφ3 |}, so M2,3(λ) < min{|R2|, |R3|} and l(R2) ̸= l(R3).

Now if l(R2) < l(R3), then by (3.5) we have

M2,3(λ) = r(R2)− l(R3) + 1 > r(R1)− l(R3) + 1 = M1,3(λ), (5.5)

but if r(Sφ2) < l(Sφ3)− 1, then Mφ2,φ3(µ) = 0 ⩽ Mφ1,φ3(µ), and if r(Sφ2) ⩾ l(Sφ3)− 1, then

Mφ2,φ3(µ) = r(Sφ2)− l(Sφ3) + 1 + χ(φ2 > φ3) ⩽ r(Sφ1)− l(Sφ3) + 1 = Mφ1,φ3(µ), (5.6)

a contradiction in either case. Similarly, if l(R2) > l(R3), then by (3.5) we have

M2,3(λ) = r(R3)− l(R2) + 2 > r(R1)− l(R2) + 1 = M1,2(λ), (5.7)

but if r(Sφ2) < l(Sφ3)− 1, then Mφ2,φ3(µ) = 0 ⩽ Mφ1,φ2(µ), and if r(Sφ2) ⩾ l(Sφ3)− 1, then

Mφ2,φ3(µ) = r(Sφ2)− l(Sφ3) + 1 + χ(φ2 > φ3) ⩽ r(Sφ2)− l(Sφ3) + 1 = Mφ1,φ2(µ), (5.8)

a contradiction in either case. This proves the first claim and the second follows by rotating.
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λ =

R1

R2

R3

R4

R5

µ =

S1 = Sφ1

S2 = Sφ5

S3 = Sφ3

S4 = Sφ2

S5 = Sφ4

Figure 5.3: A minimal noncommuting path λ = (R1, . . . , R5) with l(R5) > · · · > l(R1) and a
horizontal-strip µ = (S1, . . . , S5) with Π(λ) ∼= Π(µ).

Proposition 5.13. Let λ = (R1, . . . , Rn) be a minimal noncommuting path with
l(Rn) > · · · > l(R1). Let µ = (S1, . . . , Sn) be a horizontal-strip, φ : Π(λ)

∼−→ Π(µ), and
let i be such that l(Si) is minimal and j be such that l(Sj) is maximal. Then

r(Sj)− l(Si) ⩾ r(Rn)− l(R1) with equality only if i = 1 and j = n. (5.9)

Example 5.14. Proposition 5.13 describes a situation like the one in Figure 5.3. Informally,
when the rows of λ move to the right, we could have Mt,t+1(λ) = 0 and the correspond-
ing rows could be permuted in µ. This is a crucial example to keep in mind. We may not
have ℓ(Sφt+1) > ℓ(Sφt) for every t, but we can deduce about the position of the rightmost row Sj .

Proof of Proposition 5.13. Note that we cannot directly apply Proposition 5.9 because
we do not know that l(Sφt+1) > l(Sφt) for every t. Instead, we will reorder the rows of µ and
compute directly. By Corollary 3.13, Part 3, we have Mt,t+1(λ) < min{|Rt|, |Rt+1|},
so Mφt,φt+1(µ) < min{|Sφt|, |Sφt+1 |} and in particular the l(Sφt) are distinct. Let σ be the
permutation that sorts the rows of µ so that

l(Si) = l(Sσ1) < l(Sσ2) < · · · < l(Sσn−1) < l(Sσn) = l(Sj). (5.10)

By Proposition 5.6, Part 1, we have Mt,t′(λ) = 0 if |t′ − t| ⩾ 2. Now by (3.6), we have

r(Sj)− l(Si) = l(Sσn)− l(Sσ1) + |Sσn| − 1 (5.11)
= l(Sσn−1)− l(Sσ1) + |Sσn |+ |Sσn−1| −Mσn−1,σn(µ)− 1 + χ(σn−1 > σn)

· · · =
n∑

t=1

|Sσt | −M(µ)− 1 +
n−1∑
t=1

χ(σt > σt+1)

⩾
n∑

t=1

|Rt| −M(λ)− 1

· · · = l(Rn−1)− l(R1) + |Rn|+ |Rn−1| −Mn−1,n(λ)− 1

= r(Rn)− l(R1) + |Rn| − 1 = r(Rn)− l(R1),



28 Foster Tom

with equality only if i = σ1 < · · · < σn = j, so i = 1 and j = n.

We now describe the structure of a minimal noncommuting path (R1, . . . , Rn) where we
have l(R1) < l(Rn) and R1 ↮ Rn. Informally, such a minimal noncommuting path must look
loosely like one of the examples in Figure 5.1.

Lemma 5.15. Letλ=(R1, . . . , Rn) be a minimal noncommuting path with n⩾4, l(R1)<l(Rn),
and R1 ↮ Rn.

1. Suppose that there is no i ⩾ 3 for which R1 ⋨ Ri and that there is no j ⩽ n − 2 for
which Rn ⋨ Rj . Then one of the following holds.

• We have l(R2) > l(R1), l(Rn−1) < · · · < l(R2), and l(Rn) > l(Rn−1).

• We have l(Rn−1) > · · · > l(R1), Rt ≺ Rn for 2 ⩽ t ⩽ n− 2, and l(Rn) < l(Rn−1).

• We have l(R2) < l(R1), l(Rn) > · · · > l(R2), and Rt ≺ R1 for 3 ⩽ t ⩽ n− 1.

2. Now suppose that R1 ⋨ Ri for some minimal i ⩾ 3, and that in fact i = n − 1.
Then l(Rn) > l(Rn−1) and one of the following holds.

• We have l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1).

• We have l(Ri−1) > · · · > l(R1), Rt ≺ Rn for 2 ⩽ t ⩽ i− 1, and l(Ri) < l(Ri−1).

• We have n = 4, l(R2) > l(R1), l(R3) < l(R2), and R4 ⋨ R2.

3. Now suppose that R1 ⋨ Ri for some minimal i ⩾ 3, and that i ⩽ n− 2. Then Rn ⋨ Ri,
so Rn ⋨ Rj for some maximal i ⩽ j ⩽ n− 2. Additionally, one of the following holds.

• We have l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1).

• We have i = j = 3, l(R2) > l(R1), Rn ⋨ R2, and l(R3) < l(R2).

Similarly, one of the following holds.

• We have l(Rn) < · · · < l(Rj+1) and l(Rj+1) > l(Rj).

• We have i = j = n− 2, l(Rn) > l(Rn−1), R1 ⋨ Rn−1, and l(Rn−1) < l(Rn−2).

Finally, we must have either j = i, or j = i+ 1 and l(Rj) < l(Ri).

Remark 5.16. If the hypothesis of (1) does not hold, then R1 ⋨ Ri for some i ⩾ 3 or Rn ⋨ Rj

for some j ⩽ n − 2. By rotating, we may assume that R1 ⋨ Ri for some i ⩾ 3, and by
Corollary 3.13, Part 3, we cannot have R1 ≺ Rn, so i ⩽ n − 1. Therefore (2) and (3) cover all
of the cases we will need.
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Proof of Lemma 5.15. Note that because n ⩾ 4, we must have R2 ↔ Rn by minimality.
Suppose that there is no i ⩾ 3 for which R1 ⋨ Ri and that there is no j ⩽ n − 2 for

which Rn ⋨ Rj . Additionally, suppose that l(R2) > l(R1). Because l(R1) < l(Rn), by
Proposition 5.6, Part 2, we must have R2 ≺ Rn or Rn ≺ R2, so by our hypothesis we must
have R2 ≺ Rn and by Proposition 5.7, Part 2, that Rt ≺ Rn for 2 ⩽ t ⩽ n − 2. Note that
if R2 ≺ Rk for any 4 ⩽ k ⩽ n− 1, then we would have R1 ≺ Rk by Proposition 5.7, Part 2, and
because n ⩾ 5, R1 ⋨ Rk by Proposition 5.7 Part 1, contradicting our hypothesis. Therefore,
by Proposition 5.7, Part 3, we have either l(Rn−1) < · · · < l(R2) and l(Rn) > l(Rn−1) and the
first possibility holds, or we have l(Rn−1) > · · · > l(R2) > l(R1) and l(Rn) < l(Rn−1) and
the second possibility holds. Now suppose that l(R2) < l(R1). If l(Rn) > l(Rn−1), then by
rotating we can reduce to the case where l(R2) > l(R1) and it follows that the third possibility
holds, so it remains to consider the case where l(Rn) < l(Rn−1). Because l(Rn−1) > l(Rn) >
r(R2) ⩾ l(R2), we have R2 ↔ Rn−1 and n ⩾ 5, so Proposition 5.7, Part 1 applies. Also, we
must have l(Rt+1) > l(Rt) for some minimal 2 ⩽ t ⩽ n − 2. By Proposition 5.6, Part 2, we
must have Rt−1 ≺ Rt+1 or Rt+1 ≺ Rt−1. However, by Proposition 5.7, Part 2, if Rt−1 ≺ Rt+1,
then R1 ⋨ Rt+1, and if Rt+1 ≺ Rt−1, then Rn ⋨ Rt−1, contradicting our hypothesis in both
cases.

Now suppose that R1 ⋨ Ri for some minimal i ⩾ 3, and that in fact i = n − 1.
Then l(Rn−1) ⩽ l(R1) < l(Rn) by Proposition 5.2. By Proposition 5.7, Part 2, we must
have either l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1) and the first possibility holds, or
we have l(Ri−1) > · · · > l(R1) ⩾ l(Ri) and l(Ri) < l(Ri−1). Then because l(Rn) > l(R1),
by Proposition 5.6, Part 2, we must have either R2 ≺ Rn, in which case we have Rt ≺ Rn

for 2 ⩽ t ⩽ n − 2 = i − 1 by Proposition 5.7, Part 2, and the second possibility holds, or we
have Rn ⋨ R2. In this case, if n ⩾ 5 then Ri ≺ R2 and R2 ≺ Ri by Proposition 5.7, Part 2,
but this is impossible by Proposition 5.7, Part 1, so we must have n = 4 and the third possibility
holds.

Now suppose that R1 ⋨ Ri for some minimal i ⩾ 3, and that i ⩽ n − 2, so in particular,
n ⩾ 5 and Proposition 5.7, Part 1 applies. Then because R1 ↮ Rn, by Proposition 5.6, Part 3,
we have Rn ⋨ Ri, so Rn ⋨ Rj for some maximal i ⩽ j ⩽ n − 2. By Proposition 5.7,
Part 3 we must have either l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1), in which case the first
possibility holds, or we have l(Ri−1) > · · · > l(R1) and l(Ri) < l(Ri−1). But in this case,
because l(Rn) > l(R1), by Proposition 5.6, Part 2, we have R2 ≺ Rn or Rn ≺ R2. If R2 ≺ Rn,
then by Proposition 5.7, Part 2, we would have Rj ≺ Rn, which is impossible by definition
of j, so we must have Rn ⋨ R2. If j ⩾ 4, then we would have Rj ≺ R2 by Proposition 5.7,
Part 2, but because Rn ≺ Rj and R1 ↮ Rn, by Proposition 5.6, Part 3, we have R1 ≺ Rj

and R2 ≺ Rj by Proposition 5.7, Part 2 again, which is impossible by Proposition 5.7, Part 1.
Therefore, we must have i = j = 3 and the second possibility holds. This proves the first claim
and the second follows by rotating. Finally, if j ⩾ i + 2, then by Proposition 5.7, Part 2, we
would have Ri ≺ Rj and Rj ≺ Ri, which is impossible by Proposition 5.7, Part 1, so we must
have either j = i or j = i+ 1. If j = i+ 1, then by Proposition 5.7, Part 2, we have Ri−1 ≺ Rj

and now l(Rj) ⩽ l(Ri−1) < l(Ri) by Proposition 5.2. This completes the proof.

We now describe the image of a minimal noncommuting path under an isomorphism of
weighted graphs.
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Lemma 5.17. Let λ = (R1, . . . , Rn) be a minimal noncommuting path with l(R1) < l(Rn)
and R1 ↮ Rn. Let µ = (S1, . . . , Sn) and φ : Π(λ)

∼−→ Π(µ) satisfy φ1 = 1, l(S1) < l(Sφn),
and S1 ↮ Sφn . Then φn = n.

Example 5.18. Informally, Lemma 5.17 describes a situation like the one below. The condi-
tions l(R1) < l(R6), R1 ↮ R6, l(S1) < l(Sφ6), and S1 ↮ Sφ6 fix the horizontal positions
of R1, R6, S1, and Sφ6 . Then if we have a minimal noncommuting path in λ from R1 to R6, the
row Sφ6 must be above the other rows in µ. Note that the intermediate rows can be permuted as
in this example.

λ =

R1

R2

R3

R4

R5

R6

µ =

S1 = Sφ1

S2 = Sφ5

S3 = Sφ3

S4 = Sφ2

S5 = Sφ4

S6 = Sφ6

Proof of Lemma 5.17. By translating all rows, we may assume without loss of generality
that l(R1) = l(S1), and then by (3.6) we have l(Rn) = l(Sφn) as well. The idea is to re-
peatedly apply Proposition 5.9 and Proposition 5.13 to write the inequality l(Sφn) ⩾ l(Rn),
for which equality holds only if φn = n. Because equality does indeed hold, we will conclude
that φn = n.

Case 0: We have n = 3. By Proposition 5.11, if l(R2) > l(R1), then l(Sφ2) > l(S1), so
by Proposition 5.9 we have l(Sφ2) ⩾ l(R2). By Proposition 5.11 again, if l(R3) > l(R2),
then l(Sφ3)>l(Sφ2), so by Proposition 5.9 we have l(Sφ3)⩾ l(R3) with equality only if φ3>φ2.
Because equality does indeed hold, we must have φ3 > φ2 and therefore φ3 = 3.

We may now assume that n ⩾ 4, so it remains to consider the several possibilities outlined
in Lemma 5.15. Cases 1a and 1b illustrate the main ideas.

Case 1: There is no i ⩾ 3 for which R1 ⋨ Ri and there is no j ⩽ n− 2 for which Rn ⋨ Rj .

Case 1a: We have l(R2) > l(R1), l(Rn−1) < · · · < l(R2), and l(Rn) > l(Rn−1). By
Proposition 5.11, we have l(Sφ2) > l(S1), so by Proposition 5.9 we have l(Sφ2) ⩾ l(R2). By
Proposition 5.9 again, we have l(Sφn−1) ⩾ l(Rn−1) with equality only if φn−1 > · · · > φ2. By
Proposition 5.11, we have l(Sφn) > l(Sφn−1), so by Proposition 5.9 we have l(Sφn) ⩾ l(Rn)
with equality only if we also have φn > φn−1. Because equality does indeed hold, we must
have φn > φn−1 > · · · > φ2, so φn = n.
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Case 1b: We have l(Rn−1) > · · · > l(R1), Rt ≺ Rn for 2 ⩽ t ⩽ n− 2, and l(Rn) < l(Rn−1).
As in Case 1a, by Proposition 5.11, we have l(Sφ2) > l(S1), so by Proposition 5.9 we
have l(Sφ2) ⩾ l(R2). However, we must now be careful because we need not have
l(Sφn−1) > · · · > l(Sφ2), so we take a slightly different approach. Let k ∈ {φt : 2 ⩽ t ⩽ n−1}
be such that l(Sk) is maximal. By Proposition 5.13, we have r(Sk) ⩾ r(Rn−1) with equal-
ity only if k = n − 1. If Rn−1 ⊀ Rn, then we must have k = φn−1 because Sφt ≺ Sφn

for every 2 ⩽ t ⩽ n − 1 except for Sk. Now by Proposition 5.9, we have l(Sφn) ⩾ l(Rn)
with equality only if φn > φn−1 = k = n − 1. Because equality does indeed hold, we must
have φn = n. On the other hand, if Rn−1 ≺ Rn, then Sk ≺ Sφn and by Corollary 3.13, Part 3,
we have r(Sφn) ⩾ r(Sk) − 1 ⩾ r(Rn−1) − 1 = r(Rn) with equality only if φn > k = n − 1.
Because equality does indeed hold, we must have φn = n.

Case 1c: We have l(R2) < l(R1), l(Rn) > · · · > l(R2), and Rt ≺ R1 for 3 ⩽ t ⩽ n− 1. By
rotating, the conclusion follows from Case 1b.

We now assume that R1 ⋨ Ri for some minimal i ⩾ 3 or Rn ⋨ Rj for some maxi-
mal j ⩽ n − 2. By rotating, we may assume that R1 ⋨ Ri for some minimal i ⩾ 3. Note
that by Corollary 3.13, Part 3, we cannot have R1 ≺ Rn, so we have i ⩽ n − 1. It remains to
consider the cases where i = n− 1 and where i ⩽ n− 2.

Case 2: We have R1 ⋨ Ri for some minimal i ⩾ 3, and in fact i = n− 1.

Case 2a: We have l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1). By Proposition 5.9, we
have l(Sφi−1

) ⩾ l(Ri−1) with equality only if φi−1 > · · · > φ2. If l(Sφi
) > l(Sφi−1

), then by
Proposition 5.9 again, we have l(Sφn) ⩾ l(Rn) with equality only if φn>φi>φi−1> · · ·>φ2.
Because equality does indeed hold, we must have φn = n.

Now suppose that l(Sφi
) ⩽ l(Sφi−1

). We will show that this is narrowly possible, but µ
will be so specifically determined that we will be able to reduce to the previous case. By Corol-
lary 3.13, Part 3, we have Mi−1,i(λ) < min{|Ri−1|, |Ri|}, so we must have r(Sφi

) < r(Sφi−1
).

Again, by Corollary 3.13, Part 3, we have Mt,t+1(λ) > 0 for 1 ⩽ t ⩽ i − 2, and there-
foreMφt,φt+1(µ) > 0 and the rows S1, Sφ2 , . . . , Sφi−1

must overlap; to be precise, S1∪· · ·∪Sφi−1

must be a row. Now because r(S1) < r(Sφn) and Mφt,φn(µ) = 0 for 2 ⩽ t ⩽ i − 1, we must
have r(Sφi−1

) < l(Sφn). Because S1 ≺ Sφi
, we now have

r(S1) ⩽ r(Sφi
) + 1 ⩽ r(Sφi−1

) ⩽ l(Sφn)− 1 ⩽ r(S1), (5.12)

so we have equality everywhere and in particular, M1,i−1(λ) = min{|R1|, |Ri−1|} > 0. Be-
cause M1,t(λ) = 0 for 3 ⩽ t ⩽ i − 1 by Proposition 5.6, Part 1, this means that in fact i = 3.
Now by (5.12), we have M1,4(λ) = M3,4(λ) = 0, so r(R1) = r(R3) = l(R4) − 1 by Corol-
lary 3.13, Part 3, and l(R3) < l(R1) becauseR1 ⋨ R3. BecauseM1,2(λ) = min{|R1|, |R2|}, we
either have R1 ≺ R2 or R2 ≺ R1, but because l(R2) < l(R3) < l(R1), we cannot have R2 ≺ R1

by Proposition 5.2, Part 2, so R1 ≺ R2 and r(R2) = r(R1) − 1 by Corollary 3.13, Part 3.
But now |R3| − 1 = M2,3(λ) = Mφ2,φ3(µ) = |Sφ2| − 1 = |R2| − 1, so |R2| = |R3|.
Moreover, we have R1 ≺ R2, R1 ≺ R3, and M2,4(λ) = M3,4(λ) = 0 so in fact these two
vertices are equivalent in Π(λ), and we can swap the roles of these two vertices to reduce to
the case where l(Sφi

) > l(Sφi−1
). This possibility is illustrated below. It is barely possible to
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have l(Sφ3) ⩽ l(Sφ2), but this requires Sφ2 and Sφ3 to play equivalent roles in Π(µ), so by
instead considering the identity isomorphism φ̃ : Π(λ)

∼−→ Π(µ), we can reduce to the previous
case.

λ =

R1

R2

R3

R4

µ =

S1

S2 = Sφ3

S3 = Sφ2

S4

Case 2b: We have l(Ri−1) > · · · > l(R1), Rt ≺ Rn for 2 ⩽ t ⩽ i − 1, and l(Ri) < l(Ri−1).
Let k ∈ {φt : 2 ⩽ t ⩽ i − 1} be such that l(Sk) is maximal. By Proposition 5.13, we
have r(Sk) ⩾ r(Ri−1)with equality only if k = i−1. IfRi−1 ⊀ Ri, then we must have k = φi−1

because Sφt ≺ Sφi
for every 2 ⩽ t ⩽ i − 1 except for Sk. Now by Proposition 5.9, we

have l(Sφn) ⩾ l(Rn) with equality only if φn > φi > φi−1 = k = i − 1. Because equal-
ity does indeed hold, we must have φn = n. On the other hand, if Ri−1 ≺ Ri, then Sk ≺ Sφi

,
and by Corollary 3.13, Part 3, we have r(Sφi

) ⩾ r(Sk)−1 ⩾ r(Ri−1)−1 = r(Ri) with equality
only if φi > k = i − 1. Then by Proposition 5.9 again, we have l(Sφn) ⩾ l(Rn) with equality
only if φn > φi. Because equality does indeed hold, we must have φn = n.

Case 2c: We have n = 4, l(R2) > l(R1), l(R3) < l(R2), and R4 ⋨ R2. By Proposition 5.11,
we have l(Sφ2) > l(S1) and l(Sφ4) > l(Sφ3), so by Proposition 5.9, we have l(Sφ4) ⩾ l(R4)
with equality only if φ4 > φ3 > φ2. Because equality does indeed hold, we must have φ4 = 4.

Case 3: We have R1 ⋨ Ri for some minimal 3⩽ i⩽n− 2. We first show that l(Sφi
)⩾ l(Ri)

with equality only if φi > φt for all t < i. If i = j = 3, l(R2) > l(R1), Rn ⋨ R2,
and l(R3) < l(R2), then we have l(Sφ2) > l(S1) by Proposition 5.11 and the result follows
as before from Proposition 5.9. Now suppose that l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1).
We show that l(Sφi

) > l(Sφi−1
). Suppose that l(Sφi

) ⩽ l(Sφi−1
). By Corollary 3.13, Part 3,

we have Mi−1,i(λ) < min{|Ri−1|, |Ri|}, so we must have r(Sφn) ⩽ r(Sφi
) + 1 ⩽ r(Sφi−1

).
Because Mt,n(λ) = 0 for 2 ⩽ t ⩽ i− 1 and Mt,t+1(λ) > 0 for 1 ⩽ t ⩽ i− 2 by Corollary 3.13,
Part 3, we must have r(Sφi−1

) < l(Sφn) ⩽ r(Sφn), a contradiction, so indeed l(Sφi
) > l(Sφi−1

).
Now by Proposition 5.9, we have l(Sφi

) ⩾ l(Ri) with equality only if φi > φt for all t < i.
Because either j = i, or j = i + 1 and l(Rj) < l(Ri), we in fact have l(Sφj

) ⩾ l(Rj) with
equality only if φj > φt for all t < j. Finally, by rotating and repeating the previous argument,
we have l(Sφn) ⩾ l(Rn) with equality only if φn > φt for all t < n. Because equality does
indeed hold, we must have φn = n. This completes the proof.

The payoff of all our work so far is the following Corollary.

Corollary 5.19. Letλ=(R1, . . . , Rn) be a horizontal-strip with l(Ri)<l(Ri+1) andRi↮Ri+1.
Let µ = (S1, . . . , Sn) and φ : Π(λ)

∼−→ Π(µ) be such that Sφi
↮ Sφi+1

. Then there exists a
good substitute for (λ,µ).
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Proof. By cycling and rotating, we may assume without loss of generality that i = 1,
l(Sφ1) < l(Sφ2), and φ1 = 1. Let j = φ2. By applying Lemma 5.5 to µ, either we may
replace µ by a similar horizontal-strip to assume that j = 2, in which case we have our good
substitute and we are done, or there is a minimal noncommuting path (S1 = Sj1 , . . . , Sjk = Sj)
in µ from S1 to Sj . However, in this case, by considering the corresponding rows in λ, we would
have 2 = φ−1

j = φ−1
jk

⩾ k ⩾ 3 by Lemma 5.17, a contradiction. Therefore, there is indeed a
good substitute for (λ,µ).

Remark 5.20. The hypothesis that Sφi
↮ Sφi+1

is essential to the proof of Corollary 5.19. Note
that this hypothesis is not always satisfied, as Figure 5.3 shows an example where R1 ↮ R2,
but Sφ1 ↔ Sφ2 . In other words, it is possible for rows not to commute in λ but for the corre-
sponding rows to commute in µ.

Our next goal is to extend Corollary 5.19 by describing properties of the weighted graphΠ(λ)
that will force certain rows not to commute.

Definition 5.21. Let λ = (R1, . . . , Rn) be a horizontal-strip. A pair of rows (Ri, Rj) of λ
with i < j and l(Ri) < l(Rj) is strict if either

1. 0 < Mi,j < min{|Ri|, |Rj|}, or

2. Mi,j = 0 and Mi,k +Mj,k ⩾ |Rk|+ 1 for some k.

Example 5.22. The two possibilities for strictness are given below. Note that on the right, we
have Mi,k +Mj,k = 2+3 = |Rk|+1. Informally, in the second possibility where Mi,j = 0, the
weighted graph normally would not know about the relationship between Ri and Rj . However,
the presence of this row Rk glues the rows Ri and Rj together and means that the weighted graph
data forces rows Ri and Rj not to commute.

Ri

Rj

Ri

Rj

Rk

Remark 5.23. Because we define strictness using the weighted graph data, it is preserved under
isomorphisms. To be specific, if λ = (R1, . . . , Rn) and µ = (S1, . . . , Sn) are horizontal-
strips with φ : Π(λ)

∼−→ Π(µ), then if (Ri, Rj) is strict, we can cycle and rotate to assume
that l(Sφi

) < l(Sφj
) and φi < φj , and then the pair (Sφi

, Sφj
) is strict.

Proposition 5.24. Let λ = (R1, . . . , Rn) be a horizontal-strip and suppose that the pair of
rows (Ri, Rj) is strict. Then Ri ↮ Rj .

Proof. If 0 < Mi,j < min{|Ri|, |Rj|}, then Ri ↮ Rj by Corollary 3.13, Part 1, so suppose
that Mi,j = 0 and Mi,k +Mj,k ⩾ |Rk| + 1 for some k. Because l(Ri) < l(Rj) and Mi,j = 0,
we have that l(Ri) ⩾ r(Rj) + 1 and because Mi,k,Mj,k ⩽ |Rk|, we must have Mi,k,Mj,k > 0
so l(Rk) ⩽ r(Ri) + 1 ⩽ l(Rj) ⩽ r(Rk) + 1 by Proposition 3.10, Part 1. Now we either have
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Mi,k = r(Ri)−l(Rk)+1+χ(i > k) or Mi,k = min{|Ri|, |Rk|} ⩽ r(Ri)−l(Rk)+1+χ(i > k)
and similarly we have Mj,k ⩽ r(Rk) − l(Rj) + 1 + χ(k > j). Because i < j, we have
χ(i > k) + χ(k > j) ⩽ 1, so

|Rk|+1 ⩽ Mi,k+Mj,k ⩽ |Rk|+r(Ri)− l(Rj)+1+χ(i > k)+χ(k > j) ⩽ |Rk|+1, (5.13)

so we must have equality everywhere and in particular, r(Rj)− l(Ri)+1 = 0, so Ri ↮ Rj .

Remark 5.25. This proof shows that if l(Ri) < l(Rj) and Mi,j = 0, then in fact Mi,k +Mj,k ⩽
|Rk|+1 for all k, so we could replace the condition Mi,k +Mj,k ⩾ |Rk|+1 with the equivalent
condition Mi,k +Mj,k = |Rk|+ 1.

Corollary 5.26. Let λ = (R1, . . . , Rn) be a horizontal-strip with a pair of adjacent strict
rows (Ri, Ri+1). Then λ is good.

Proof. Let µ = (S1, . . . , Sn) and φ : Π(λ)
∼−→ Π(µ). By definition, we have Mi,i+1(λ) <

min{|Ri|, |Ri+1|}, so Mφi,φi+1
(µ) < min{|Sφi

|, |Sφi+1
|} and l(Sφi

) ̸= l(Sφi+1
). Therefore,

by cycling and rotating, we may assume without loss of generality that l(Sφi
) < l(Sφi+1

)
and φi < φi+1, so the pair (Sφi

, Sφi+1
) is strict. By Proposition 5.24, we have Sφi

↮ Sφi+1
, so

by Corollary 5.19, there exists a good substitute for (λ,µ).

We now investigate some useful properties of strict pairs.

Proposition 5.27. Let λ = (R1, . . . , Rn) be a horizontal-strip with i < j, l(Ri) < l(Rj),
and Ri ↮ Rj . Suppose that Ri ↮ Rk and Rj ↮ Rk for some k with k < i or k > j. Then the
pair (Ri, Rj) is strict.

Proof. By Corollary 3.13, Part 3, we cannot have Mi,j = min{|Ri|, |Rj|}, and if
0 < Mi,j < min{|Ri|, |Rj|}, then we are done, so suppose that Mi,j = 0 and therefore
l(Rj) = r(Ri) + 1 by Corollary 3.13, Part 3. Because Ri ↮ Rk, by Proposition 3.10, Part 1
we must have l(Rk) ⩽ r(Ri) + 1 = l(Rj), and because Rj ↮ Rk, we must have
r(Rk) ⩾ l(Rj)−1 = r(Ri), so by Corollary 3.13, Part 2, we in fact have l(Ri) < l(Rk) < l(Rj).
Now by (3.6), we have

Mi,k+Mj,k = r(Ri)−l(Rk)+1+χ(i > k)+r(Rk)−l(Rj)+1+χ(k > j) = |Rk|+1, (5.14)

so the pair (Ri, Rj) is strict.

Proposition 5.28. Let λ = (R1, . . . , Rn) be a minimal noncommuting path and suppose that
the pairs (Rt′ , Rt′+1) are not strict for 1 ⩽ t′ < n− 1. Then we have the following.

1. If l(Rt+1) > l(Rt), then Mt,t+1 = 0 and l(Rt+1) = r(Rt) + 1.

2. If l(Rt+1) > l(Rt) and l(Rt) < l(Rt−1), then Rt+1 ⋨ Rt−1.

3. If l(Rt+1) < l(Rt) and l(Rt) > l(Rt−1), then Rt−1 ⋨ Rt+1.



combinatorial theory 3 (3) (2023), #10 35

Proof.

1. By Corollary 3.13, Part 3 we cannot haveMt,t+1 = min{|Rt|, |Rt+1|}, and if 0 < Mt,t+1 <
min{|Rt|, |Rt+1|}, then the pair (Rt, Rt+1) would be strict, so we must have Mt,t+1 = 0
and l(Rt+1) = r(Rt) + 1.

2. By the previous part, we must have Mt,t+1 = 0. By Proposition 5.6, Part 2, we must have
Rt−1 ≺ Rt+1 or Rt+1 ≺ Rt−1. However, if Rt−1 ≺ Rt+1, then because Mt−1,t > 0
by Corollary 3.13, Part 3, we would have Mt−1,t + Mt−1,t+1 ⩾ |Rt−1| + 1 and the
pair (Rt, Rt+1) would be strict, so we must have Rt+1 ⋨ Rt−1.

3. By rotating, this follows from the previous part.

Example 5.29. The diagrams below illustrate the contradictions that we deduce in the proofs
of Parts 2 and 3 of Proposition 5.28. If Rt−1 ≺ Rt+1 as on the left, then the pair (Rt, Rt+1)
would be strict, so we concluded that Rt+1 ⋨ Rt−1. If Rt+1 ≺ Rt−1 as on the right, then the
pair (Rt−1, Rt) would be strict, so we concluded that Rt−1 ⋨ Rt+1.

Rt−1

Rt

Rt+1

Rt−1

Rt

Rt+1

It will also be convenient to make the following definition.

Definition 5.30. Let λ = (R1, . . . , Rn) be a horizontal-strip. A strict sequence of λ is
a sequence of rows (Rj1 , . . . , Rjk) such that k ⩾ 2, j1 < · · · < jk, Mjt,jt′

= 0 for
every 1 ⩽ t < t′ ⩽ k, and there is some h with h < j1 or h > jk for which

Mjt,h > 0 for all 1 ⩽ t ⩽ k and Mj1,h + · · ·+Mjk,h ⩾ |Rh|+ 1. (5.15)

Note that if a pair of rows (Ri, Rj) is a strict sequence, then it meets the second condition of
being a strict pair.

Example 5.31. In Figure 5.4, we have Mt,t′ = 0 for every 1 ⩽ t < t′ ⩽ 6, Mt,7 > 0
for 1 ⩽ t ⩽ 6, and M1,7 + · · · + M6,7 = 2 + 5 + 2 + 4 + 3 + 3 = 19 = |R7| + 1,
so (R1, . . . , R6) is a strict sequence. Informally, our next Proposition will show that every strict
sequence looks very much like this example. BecauseMt,t′ = 0 for 1 ⩽ t < t′ ⩽ 6, the weighted
graph normally would not know about the relationship between these rows. However, the pres-
ence of the row R7 glues these rows together and means that the weighted graph data forces the
adjacent rows not to commute.

Remark 5.32. Because we define a strict sequence using the weighted graph data, it is preserved
under isomorphisms. To be specific, if λ = (R1, . . . , Rn) and µ = (S1, . . . , Sn) are horizontal-
strips with φ : Π(λ)

∼−→ Π(µ), then if (Rj1 , . . . , Rjk) is a strict sequence, we can cycle to
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λ =

R1

R2

R3

R4

R5

R6

R7

Figure 5.4: An example of a strict sequence.

assume that φh > φjt for every 1 ⩽ t ⩽ k. Because Mjt,jt′
(λ) = 0 for 1 ⩽ t < t′ ⩽ k, the

integers l(Sφjt
) for 1 ⩽ t ⩽ k must be distinct, so we can let σ : {1, . . . , k} → {1, . . . , k} be

the permutation that sorts them in increasing order, in other words

l(Sφjσ1
) < l(Sφjσ2

) < · · · < l(Sφjσk
). (5.16)

Then the sequence (Sφjσ1
, . . . , Sφjσk

) is strict.

Proposition 5.33. Let λ = (R1, . . . , Rn) be a horizontal-strip with a sequence of rows of the
form (Rj1 , . . . , Rjk) with k ⩾ 2, j1 < · · · < jk, Mjt,jt′

= 0 for every 1 ⩽ t < t′ ⩽ k, and there
is some h with h < j1 or h > jk for which Mjt,h > 0 for every 1 ⩽ t ⩽ k. Then this sequence
is strict if and only if l(Rjt+1) = r(Rjt) + 1 for every 1 ⩽ t ⩽ k − 1 and

l(Rj1) + χ(j1 > h) ⩽ l(Rh) ⩽ r(Rh) + χ(h > jk) ⩽ r(Rjk). (5.17)

Proof. By Proposition 3.10 Part 2, because all of the Mjt,jt′
are zero, the integers l(Rjt)

for 1 ⩽ t ⩽ k are distinct, so let σ : {1, . . . , k} → {j1, . . . , jk} sort the rows Rjt so that l(Rjt)
is increasing. Then because the Mjt,jt′

are zero we have

l(Rσ1) < r(Rσ1) + 1 + χ(σ1 > σ2) ⩽ l(Rσ2) < r(Rσ2) + 1 + χ(σ2 > σ3) ⩽ · · · ⩽ l(Rσk
).

(5.18)
Because Mσ1,h > 0, we must have l(Rh) ⩽ r(Rσ1) + 1 ⩽ l(Rσ2) and because Mσk,h > 0, we
must have r(Rh) ⩾ l(Rσk

)− 1 ⩾ r(Rσk−1
). We now have that

Mσ1,h ⩽ r(Rσ1)− l(Rh) + 1 + χ(σ1 > h) ⩽ l(Rσ2)− l(Rh) + χ(σ1 > h)− χ(σ1 > σ2)
(5.19)

Mσ2,h = |Rσ2| = r(Rσ2)− l(Rσ2) + 1 ⩽ l(Rσ3)− l(Rσ2)− χ(σ2 > σ3)

· · · =
Mσk−1,h = |Rσk−1

| = r(Rσk−1
)− l(Rσk−1

) + 1 ⩽ l(Rσk
)− l(Rσk−1

)− χ(σk−1 > σk)

Mσk,h ⩽ r(Rh)− l(Rσk
) + 1 + χ(h > σk).
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Also note that χ(σ1 > h)− χ(σ1 > σ2)− · · · − χ(σk−1 > σk) + χ(h > σk) ⩽ 1 with equality
only if σ1 < · · · < σk. Therefore, by summing the above equations, we have

k∑
t=1

Mσt,h ⩽ r(Rh)− l(Rh) + 1 + 1 = |Rh|+ 1, (5.20)

so the sequence is strict if and only if we have equality everywhere, meaning that σ1 < · · · < σk,
l(Rjt+1) = r(Rjt) + 1 for 1 ⩽ t ⩽ k − 1, and (5.17) holds.

Remark 5.34. This proof shows that if l(Rj1) < · · · < l(Rjk) and the Mjt,jt′
= 0, then

in fact Mj1,h + · · · + Mjk,h ⩽ |Rh| + 1 for all h, so we could replace the condition
Mj1,h + · · ·+Mjk,h ⩾ |Rh|+ 1 with the equivalent condition Mj1,h + · · ·+Mjk,h = |Rh|+ 1.

Proposition 5.35. Let λ = (R1, . . . , Rn) be a horizontal-strip with a strict sequence of rows
(Rj1 , . . . , Rjk). Suppose that there is some jt < x < jt+1 with l(Rx) = l(Rjt+1) andRjt+1 ⋨ Rx.
Then one of the following holds.

1. The sequence (Rj1 , . . . , Rjt , Rx) is strict.

2. There is a shorter strict sequence of the form (Rj1 , . . . , Rjt , Rx, Rjt′+1
, . . . , Rjk) for

some t′ ⩾ t+ 2.

3. There is a strict pair (Rx, Rjt′+1
) for some t′ ⩾ t+ 1.

Example 5.36. Informally, Proposition 5.35 describes a situation like the one in Figure 5.5. The
sequence (Rj1 , . . . , Rj6) is the strict sequence from Example 5.31. The rows Rx1 , Rx2 , and Rx3

illustrate the three possibilities described in Proposition 5.35. Informally, because Rx1 extends
past Rjt , the sequence (Rj1 , Rj2 , Rx1) is strict. Because Rx2 = Rj3 ∪ Rj4 ∪ Rj5 , it can replace
these rows to produce the shorter strict sequence (Rj1 , Rj2 , Rx2 , Rj6). Finally, because Rx3 ends
between the rows Rj4 and Rj5 , it results in the strict pair (Rx3 , Rj5).

Proof of Proposition 5.35. By the definition of a strict sequence, there is some h with h < j1
or h > jk for which Mjt,h > 0 for all 1 ⩽ t ⩽ k and

∑k
t=1Mjt,h ⩾ |Rh|+ 1, and by cycling we

may assume without loss of generality that h > jk, so that l(Rj1)⩽ l(Rh)<r(Rh)+1⩽r(Rjk)
by (5.17). Noting that Rjt+1 ⋨ Rx, let t + 1 ⩽ t′ ⩽ k be maximal such that Rjt′

≺ Rx.
If t′ = k, then we must have r(Rx) ⩾ r(Rjk) ⩾ r(Rh) + 1 by Proposition 5.2 and now the
sequence (Rj1 , . . . , Rjt , Rx) is strict by Proposition 5.33, so the first possibility holds and we may
now assume that t′⩽k−1. By maximality of t′, we have thatRjt′+1

⊀Rx. IfMx,jt′+1
=0, then we

must have r(Rx) = r(Rjt′
) = l(Rjt′+1

)−1 and the sequence (Rj1 , . . . , Rjt , Rx, Rjt′+1
, . . . , Rjk)

is strict by Proposition 5.33. Also note that because Rx ⊀ Rjt+1 , we must have t′ > t + 1 so
this strict sequence is indeed shorter and the second possibility holds. Finally, if Mx,jt′+1

> 0,
then because l(Rx) = l(Rjt+1) < l(Rjt′+1

), we have Rx ⊀ Rjt′+1
, and by maximality of t we

have Rjt′+1
⊀ Rx, so 0 < Mx,jt′+1

< min{|Rx|, |Rjt′+1
|}, the pair (Rx, Rjt′+1

) is strict, and the
third possibility holds.

We now describe the structure of a minimal noncommuting path with no strict pairs.
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λ =

Rj1

Rj2

Rj3

Rx1

Rx2

Rx3

Rj4

Rj5

Rj6

Rh

Figure 5.5: A strict sequence with a row Rx as in Proposition 5.35.

Proposition 5.37. Let λ = (R1, . . . , Rn) be a minimal noncommuting path with l(R1) < l(Rn)
and R1 ↮ Rn and suppose that the pairs (Rt, Rt+1) are not strict for 1 ⩽ t ⩽ n− 1. Then one
of the following holds.

1. One of the sequences (R1, . . . , Rn−1), (R2, . . . , Rn−1), or (R2, . . . , Rn) is strict.

2. We have n = 4, l(R2) = l(R4) = r(R1)− 1 = r(R3)− 1, R4 ⋨ R2, and R1 ⋨ R3.

Example 5.38. Informally, Proposition 5.37 tells us that a minimal noncommuting path with no
strict pairs (other than possibly (R1, Rn)) must look like one of the examples below.

Proof of Proposition 5.37. We consider several cases.

Case 0: We haven = 3. In this case, we haveR1 ↮ R2 andR2 ↮ R3. Because l(R1)<l(R3),
we must have either l(R1) < l(R2), in which case the pair (R1, R2) is strict by Proposition 5.27,
or l(R2) < l(R3), in which case the pair (R2, R3) is strict by Proposition 5.27, a contradiction.

We may now assume that n ⩾ 4, so it remains to consider the several possibilities outlined
in Lemma 5.15.
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Case 1: There is no i ⩾ 3 for which R1 ⋨ Ri and there is no j ⩽ n− 2 for which Rn ⋨ Rj .

Case 1a: We have l(R2) > l(R1), l(Rn−1) < · · · < l(R2), and l(Rn) > l(Rn−1). Because
l(R2) > l(R1) and l(R3) < l(R2), we have R1 ⋨ R3 by Proposition 5.28, contradicting our
hypothesis.

Case 1b: We have l(Rn−1) > · · · > l(R1), Rt ≺ Rn for 2 ⩽ t ⩽ n− 2, and l(Rn) < l(Rn−1).
By Proposition 5.28, we must have l(Rt+1) = r(Rt) + 1 for 1 ⩽ t ⩽ n − 2. Now by Propo-
sition 5.33, if M1,n > 0 then the sequence (R1, . . . , Rn−1) is strict and if M1,n = 0 then the
sequence (R2, . . . , Rn−1) is strict, so the first possibility holds.

Case 1c: We have l(R2) < l(R1), l(Rn) > · · · > l(R2), and Rt ≺ R1 for 3 ⩽ t ⩽ n− 1. By
rotating, the conclusion follows from Case 1b.

We now assume that R1 ⋨ Ri for some minimal i ⩾ 3 or Rn ⋨ Rj for some maxi-
mal j ⩽ n − 2. By rotating, we may assume that R1 ⋨ Ri for some minimal i ⩾ 3. Note
that by Corollary 3.13, Part 3, we cannot have R1 ≺ Rn, so we have i ⩽ n − 1. It remains to
consider the cases where i = n− 1 and where i ⩽ n− 2.

Case 2: We have R1 ⋨ Ri for some minimal i ⩾ 3, and in fact i = n− 1.

Case 2a: We have l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1). By Proposition 5.7, Part 2,
we have Ri−2 ≺ Ri, but because l(Ri−1) < l(Ri−2) and l(Ri) > l(Ri−1), we have Ri ⋨ Ri−2

by Proposition 5.28, a contradiction.

Case 2b: We have l(Ri−1) > · · · > l(R1), Rt ≺ Rn for 2 ⩽ t ⩽ i − 1, and l(Ri) < l(Ri−1).
Because l(Ri) < l(Ri−1) and l(Rn) > l(Ri), by Proposition 5.28, Part 2 we have Rn ⋨ Ri−1,
contradicting our hypothesis.

Case 2c: We have n = 4, l(R2) > l(R1), l(R3) < l(R2), and R4 ⋨ R2. By Proposition 5.2,
Proposition 3.10, and Proposition 5.28, Part 1, we must have r(R1) + 1 = l(R2) ⩽ l(R4) ⩽
r(R1) + 1, so l(R2) = l(R4), and we must have l(R4) − 1 = r(R3) ⩾ r(R1) = l(R2) − 1 =
l(R4) − 1, so r(R3) = r(R1). In particular, we have M1,n = 0. By Proposition 5.28, Parts 2
and 3, we must have R4 ⋨ R2 and R1 ⋨ R3 and the second possibility holds.

Case 3: We have Ri ⋨ Ri for some minimal 3 ⩽ i ⩽ n − 2. If l(Ri−1) < l(Ri−2)
and l(Ri) > l(Ri−1), then by Proposition 5.7, Part 2, we have Ri−2 ≺ Ri, but by Proposi-
tion 5.28, Part 2 we have Ri ⋨ Ri−2, a contradiction. Therefore, by Lemma 5.15, we must
have i = j = 3, l(R2) > l(R1), Rn ⋨ R2, and l(R3) < l(R2). Similarly, by rotating, we
must have i = j = n − 2, so n = 5, l(R5) > l(R4), R1 ⋨ R4, and l(R4) < l(R3). How-
ever, by Proposition 5.7, Parts 1 and 2, we have R2 ≺ R4 and R4 ≺ R2, which is impossible
because n ⩾ 5.

We now describe another operation that we can perform on a horizontal-strip while preserv-
ing similarity. We can think of it as a local rotation.
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Lemma 5.39. Let λ = (R1, . . . , Rn) and suppose that l(Ri) = r(Ri−1)+1 for some 2 ⩽ i ⩽ n.
Assume thatλ satisfies the inductive hypothesis (3.16) in Lemma 3.23. Let I = {1, . . . , i−2, i+1,
. . . , n} and define the four disjoint subsets of I

A = {t ∈ I : Mi−1,t = Mi,t = 0},
B = {t ∈ I : Ri−1 ≺ Rt, Ri ≺ Rt},

Ci−1 = {t ∈ I : Rt ≺ Ri−1, Mi,t = 0, Ma,t = 0 for all a ∈ A, Rt ≺ Rb for all b ∈ B},
Ci = {t ∈ I : Rt ≺ Ri, Mi−1,t = 0, Ma,t = 0 for all a ∈ A, Rt ≺ Rb for all b ∈ B}.

LetC = Ci−1∪Ci∪{i−1, i} and suppose thatA∪B∪C = {1, . . . , n}, in other words every row
of λ falls into one of these categories. Then there is a horizontal-strip µ = (S1, . . . , Sn) ∈ S(λ)
and φ : Π(λ)

∼−→ Π(µ) with l(Sφt) = l(Rt) for all t ∈ A ∪B and l(Sφi
) = l(Ri−1).

Example 5.40. Figure 5.6 illustrates a situation where we can apply Lemma 5.39. The rows
below λ with crosses signify rows that cannot be present because the condition A ∪ B ∪ C =
{1, . . . , n} requires that every row of λ be either disjoint from Ri−1 and Ri, contained in Ri−1,
contained in Ri, or containing both. Lemma 5.39 allows us to locally rotate the six rows of C
to produce the similar horizontal-strip µ. Although our proof constructs this specific µ, we will
only need that l(Sφt) = l(Rt) for all t ∈ A ∪B and l(Sφi

) = l(Ri−1).

Proof of Lemma 5.39. Informally, we will first use commuting and cycling to bring the rows
of C together. To be specific, we first claim that if t ∈ Ci and t′ /∈ Ci with either t > t′ > i,
then Rt ↔ Rt′ . Because t ∈ Ci, we have Rt ≺ Ri and Mi−1,t = 0, so by Proposition 5.2
we have l(Ri) ⩽ l(Rt) ⩽ r(Rt) ⩽ r(Ri). Now if t′ ∈ A, then Mi−1,t′ = Mi,t = Mt,t′ = 0,
so either r(Rt′) < l(Ri−1) − 1 < l(Rt) − 1 and Rt ↔ Rt′ by Proposition 3.10, Parts 2 and 3,
or l(Rt′) > r(Ri) ⩾ r(Rt) ⩾ l(Rt), but now we cannot haveRt ↮ Rt′ by Corollary 3.13, Part 3.
If t′ ∈ B, then Rt′ ≺ Ri−1, so by Proposition 5.2 we have l(Rt′) ⩽ l(Ri−1) − 1 < l(Rt), but
now we cannot have Rt ↮ Rt′ by Corollary 3.13, Part 3. If t′ ∈ Ci−1, then because Rt′ ≺ Ri−1

and Mi,t′ = 0, we have r(Rt′) < l(Ri) − 1 ⩽ l(Rt) − 1, so Rt ↔ Rt′ by Proposition 3.10,
Part 1. This establishes our claim.

Therefore, by cycling and commuting, we may assume that Ci = {i + 1, . . . , y} for some y
and similarly, by considering a rotation of λ, we may assume that Ci−1 = {x, . . . , i − 2} for
some x. In particular, we have l(Ri−1) ⩽ l(Rt) ⩽ r(Rt) ⩽ r(Ri−1) for every t ∈ Ci−1

and l(Ri) ⩽ l(Rt) ⩽ r(Rt) ⩽ r(Ri) for every t ∈ Ci. To summarize, we have

λ = (R1, . . . , Rx−1, Rx, . . . , Ri−2, Ri−1, Ri, Ri+1, . . . , Ry, Ry+1, . . . , Rn), (5.21)

where A∪B = {1, . . . , x−1}∪{y+1, . . . , n}, Ci−1 = {x, . . . , i−2}, and Ci = {i+1, . . . , y}.
Now let N = l(Ri−1) + r(Ri) and define the horizontal-strip µ = (S1, . . . , Sn) by St = Rt

if t < x or t > y, and St = N −Rx+y−t otherwise, that is

µ = (R1, . . . , Rx−1, N −Ry, . . . , N −Ri, N −Ri−1, . . . , N −Rx, Ry+1, . . . , Rn), (5.22)
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λ =

Ri−1

Ri

µ =

Sφi

Sφi−1

Figure 5.6: A horizontal-strip λ and a local rotation µ.
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and define φ : {1, . . . , n} → {1, . . . , n} by φt = t if t < x or t > y and φt = x + y − t
otherwise. Indeed, we have l(Sφt) = l(Rt) for all t ∈ A ∪ B and l(Sφi

) = ℓ(N − Ri) =
l(Ri−1) + r(Ri) − r(Ri) = l(Ri−1). We claim that φ : Π(λ)

∼−→ Π(µ). We have |Rt| = |Sφt|
for every 1 ⩽ t ⩽ n, so it remains to check that the edge weights are preserved. If t, t′ ∈ A∪B,
then the relative positions of Rt and Rt′ have not changed, so indeed Mt,t′(λ) = Mφt,φt′

(µ).
If t, t′ ∈ C, then this follows because M(Rt, Rt′) = M(N − Rt′ , N − Rt). Now suppose
that t ∈ A∪B and t′ ∈ C. We have either t′ < i− 1 and Rt′ ≺ Ri−1 or t′ > i and Rt′ ≺ Ri, so
in either case we have

l(Ri−1) ⩽ l(Rt′) ⩽ r(Rt′) ⩽ r(Ri), so l(Ri−1) ⩽ ℓ(N −Rt′) ⩽ r(N −Rt′) ⩽ r(Ri). (5.23)

Also note that χ(t > i) = χ(t > i − 1) = χ(t > t′) = χ(t > x + y − t′). Now if t ∈ A, we
have either

l(Rt) > r(Ri) + χ(i > t) ⩾ r(N −Rt′) + χ(i > x+ y − t′) or (5.24)
r(Rt) < l(Ri−1)− χ(t > i) ⩽ ℓ(N −Rt′)− χ(t > x+ y − t′), (5.25)

so in either case, we have Mφt,φt′
(µ) = 0. Similarly, if t ∈ B, we have

l(Rt) ⩽ l(Ri−1) + χ(i− 1 > t) ⩽ ℓ(N −Rt′) + χ(x+ y − t′ > t) and (5.26)
r(Rt) ⩾ r(Ri)− χ(t > i) ⩾ r(N −Rt′)− χ(t > x+ y − t′), (5.27)

so we have N −Rt′ ≺ Rt and Mφt,φt′
(µ) = |Sφt′

|.
Finally, we show that Gλ(x; q) = Gµ(x; q). Define the horizontal-strips

λ′ = (R1, . . . , Ri, Ri−1, . . . , Rn), (5.28)
λ′′ = (R1, . . . , Ri−1 ∪Ri, Ri−1 ∩Ri, . . . , Rn), (5.29)
µ′ = (R1, . . . , N −Ry, . . . , N −Ri−1, N −Ri, . . . , N −Rx, . . . , Rn), and (5.30)
µ′′ = (R1, . . . , (N −Ri) ∪ (N −Ri−1), (N −Ri) ∩ (N −Ri−1), . . . , Rn). (5.31)

Because Lemma 3.19 describes exactly how to derive the weighted graphs Π(λ′) and Π(λ′′)
from Π(λ), we have that Π(λ′) ∼= Π(µ′) and Π(λ′′) ∼= Π(µ′′). We also have n(λ′′) < n(λ),
n(λ′) = n(λ), and M(λ′) > M(λ), so because λ satisfies (3.16) by hypothesis, we have
that Gλ′(x; q) = Gµ′(x; q) and Gλ′′(x; q) = Gµ′′(x; q). Finally, by Lemma 3.18, we have

Gλ(x; q) =
1

q
Gλ′(x; q) +

q − 1

q
Gλ′′(x; q) =

1

q
Gµ′(x; q) +

q − 1

q
Gµ′′(x; q) = Gµ(x; q).

(5.32)
This completes the proof.

The hypothesis of Lemma 5.39 that A ∪ B ∪ C = {1, . . . , n} is a little technical so it will
be convenient to rephrase it as follows.

Proposition 5.41. Let λ = (R1, . . . , Rn) be a horizontal-strip with l(Ri) = r(Ri−1) + 1 and
define the sets A, B, C, and I as in Lemma 5.39. If the following hold for every t ∈ I , then we
have A ∪B ∪ C = {1, . . . , n}.
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1. If Mi−1,t > 0 and Mi,t > 0, then Ri−1 ≺ Rt and Ri ≺ Rt.

2. If Mi−1,t > 0 and Mi,t = 0, then Rt ≺ Ri−1.

3. If Mi−1,t = 0 and Mi,t > 0, then Rt ≺ Ri.

4. If Rt ≺ Ri−1, then Mi,t = 0, Ma,t = 0 for all a ∈ A, and Rt ≺ Rb for all b ∈ B.

5. If Rt ≺ Ri, then Mi−1,t = 0, Ma,t = 0 for all a ∈ A, and Rt ≺ Rb for all b ∈ B.

Proof. Let t ∈ I . We need to show that t ∈ A ∪ B ∪ Ci−1 ∪ Ci. The integers Mi−1,t and Mi,t

are either zero or nonzero. If Mi−1,t = Mi,t = 0, then t ∈ A. If Mi−1,t > 0 and Mi,t > 0,
then by (1) we have t ∈ B. If Mi−1,t > 0 and Mi,t = 0, then by (2) and (4) we have t ∈ Ci−1.
If Mi−1,t = 0 and Mi,t > 0, then by (3) and (5) we have t ∈ Ci.

The next Lemma is very technical but it is the key idea that uses local rotation to extend
Corollary 5.26 to strict sequences.

Lemma 5.42. Let λ = (R1, . . . , Rn) be a horizontal-strip with a sequence (Rj1 , . . . , Rjk)
with k ⩾ 2, j1 < · · · < jk, l(Rjt+1) = r(Rjt) + 1 for 1 ⩽ t ⩽ k − 1, and suppose that
there is no noncommuting path in λ from Rjt to Rjt+1 for any 1 ⩽ t ⩽ k − 1. Assume that λ
satisfies (3.16). Let µ = (S1, . . . , Sn) and φ : Π(λ)

∼−→ Π(µ) be such that

for some permutation σ : {1, . . . , k} → {1, . . . , k} we have l(Sφjσt+1
) = r(Sφjσt

) + 1 (5.33)

for every 1 ⩽ t ⩽ k − 1. Then there exists a good substitute for (λ,µ).

Example 5.43. Lemma 5.42 applies in a situation like the one below. Informally, the condi-
tion (5.33) asks that these rows in λ still link end to end in µ, although they may be permuted.
In this example, we have σ1 = 2, σ2 = 4, σ3 = 1, and σ4 = 3.

λ =

Rj1

Rj2

Rj3

Rj4

µ =

Sφj2

Sφj4

Sφj1

Sφj3

Remark 5.44. If (Rj1 , . . . , Rjk) is a strict sequence of λ, then k ⩾ 2, j1 < · · · < jk, and by
Proposition 5.33, l(Rjt+1) = r(Rjt) + 1 for 1 ⩽ t ⩽ k − 1. Moreover, if µ = (S1, . . . , Sn)

and φ : Π(λ)
∼−→ Π(µ), then by Remark 5.32 and by cycling µ if necessary, there will be a

permutation σ : {1, . . . , k} → {1, . . . , k} with (Sφjσ1
, . . . , Sφjσk

) a strict sequence and there-
fore l(Sφjσt+1

) = r(Sφjσt
)+ 1 for every 1 ⩽ t ⩽ k− 1. Therefore, a strict sequence satisfies the

hypothesis (5.33) of Lemma 5.42.
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Remark 5.45. Informally, the strategy will be to apply Lemma 5.39 to perform a series of local
rotations to permute the rows of λ to match those of µ. We will be able to perform these local
rotations unless some other row Rt of λ violates some condition of Proposition 5.41, forcing
certain rows of λ to link end to end. However, in this case, these rows of λ will be a proper
subset of rows that satisfies (5.33) and we can use induction to reason about these rows.

Proof of Lemma 5.42. We use induction on k. If k = 2, then because l(Rj2) = r(Rj1) + 1
and by hypothesis there is no noncommuting path in λ from Rj1 to Rj2 , we can use Lemma 5.5
to replace λ with a similar horizontal-strip as necessary to assume that j2 = j1 + 1, and then
by (5.33) we have either l(Sφj2

) = r(Sφj1
) + 1 or l(Sφj1

) = r(Sφj2
) + 1, so Sφj1

↮ Sφj2
and

the result follows from Corollary 5.19. So we now assume that k ⩾ 3 and that the result holds
for 2 ⩽ k′ ⩽ k − 1. In particular, if J ⊆ {1, . . . , k} is an interval with 2 ⩽ |J | ⩽ k − 1 and
such that σ−1(J) = {1 ⩽ t′ ⩽ k : σt′ ∈ J} ⊆ {1, . . . , k} is an interval, then the sequence
of rows (Rjt : t ∈ J) satisfies (5.33) and we are done by our induction hypothesis on k. In
particular, if σ1 = 1 or σk = 1, then we can take J = {2, . . . , k}, and if σ1 = k or σk = k, then
we can take J = {1, . . . , k − 1}, so we may assume that

2 ⩽ σ1, σk ⩽ k − 1, (5.34)

and in particular, we may assume that k ⩾ 4.
We now continue to use our induction hypothesis to make several additional simplifying

assumptions. For 1 ⩽ t ⩽ n such that t ̸= jt′ for any 1 ⩽ t′ ⩽ k, consider the sets

Et = {1 ⩽ t′ ⩽ k : Rjt′
≺ Rt} and Ft = {1 ⩽ t ⩽ k : Mjt′ ,t

(λ) > 0}. (5.35)

Note that Et ⊆ Ft. Also, if t1 < t2 < t3 and t1, t3 ∈ Ft, then by Proposition 3.10, Parts 1 and 3,
we have

l(Rt) ⩽ r(Rjt1
) + 1 ⩽ l(Rjt2

) ⩽ r(Rjt2
) ⩽ l(Rjt3

)− 1 ⩽ r(Rt), (5.36)

so by Proposition 5.2 we have Rt2 ≺ Rt and t2 ∈ Et, so Et and Ft are intervals in {1, . . . , k}
and |Et| ⩾ |Ft| − 2. Similarly, consider the sets

E ′
t = {1 ⩽ t′ ⩽ k : Sφjσt′

≺ Sφt} and F ′
t = {1 ⩽ t′ ⩽ k : Mφjσt′

,φt(µ) > 0}. (5.37)

Note that E ′
t ⊆ F ′

t , E ′
t = σ−1(Et), F ′

t = σ−1(Ft) and as before, if t1 < t2 < t3 and t1, t3 ∈ F ′
t ,

then by Proposition 3.10, Parts 1 and 3, we have

l(Sφt) ⩽ r(Sφjσt1
) + 1 ⩽ l(Sφjσt2

) ⩽ r(Sφjσt2
) ⩽ l(Sφjσt3

)− 1 ⩽ r(Sφt), (5.38)

so by Proposition 5.2, we haveSφjσt2
≺ Sφt and t2 ∈ E ′

t, soE ′
t andF ′

t are intervals in {1, . . . , k}.
Therefore, if 2 ⩽ |Ft| ⩽ k−1, then taking J = Ft above we are done by our induction hypothesis
on k. Similarly, if |Ft| = k and |Et| ⩽ k − 1, then because |Et| ⩾ k − 2 ⩾ 2, taking J = Et

above we are done by our induction hypothesis on k. This means that we may assume that

if |Ft| ⩾ 2, then Et = Ft = {1, . . . , k}. (5.39)
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Now suppose that Ft = {t′}. Our goal is to show that we may assume that Rt ≺ Rjt′
,

that Ma,t(λ) = 0 for every a with Ma,jt′
(λ) = 0, and Rt ≺ Rb for every b with Rjt′

≺ Rb.
Suppose that Rt ⊀ Rjt′

. If 2 ⩽ t′ ⩽ k − 1, then Mjt′−1,t
(λ) = 0 and Mjt′+1,t

(λ) = 0 by
definition of Ft and by Proposition 3.10, Parts 1 and 3, we would have

l(Rjt′
) = r(Rjt′−1

) + 1 ⩽ l(Rt) ⩽ r(Rt) ⩽ l(Rjt′+1
)− 1 = r(Rjt′

) (5.40)

and therefore Rt ≺ Rjt′
by Proposition 5.2. This means that we must have t′ = 1 or k and for

the same reason, σt′ = 1 or k, but this contradicts our assumption (5.34). Therefore, we must
have Rt ≺ Rjt′

.
Now suppose that there is some a with Ma,jt′

(λ) = 0 but Ma,t(λ) > 0. Because Rt ≺ Rjt′
,

we haveMjt′ ,t
(λ)+Ma,t(λ) ⩾ |Rt|+1, so either jt′ < a and the pair (Rjt′

, Ra) is strict, or a < jt′
and the pair (Ra, Rjt′

) is strict. In either case, by Proposition 5.24 we have Rjt′
↮ Ra, and by

Corollary 3.13, Part 3, we have either

l(Ra) = r(Rjt′
) + 1 = l(Rjt′+1

) or l(Rjt′
) = r(Ra) + 1. (5.41)

In particular, if t′ = 1, then either Fa = ∅ or {2}, if 2 ⩽ t′ ⩽ k − 1, then either Fa = {t′ − 1}
or {t′ +1}, and if t′ = k, then either Fa = ∅ or {k− 1}. Similarly, F ′

a is either empty, in which
case σt′ = 1 or k, or F ′

a and F ′
t consist of consecutive singletons. Therefore, if Fa = ∅, then this

contradicts (5.34), and otherwise, taking J = Ft ∪ Fa we are done by our induction hypothesis
on k.

Next, let us suppose that for some b we have Rjt′
≺ Rb but Rt ⊀ Rb. If 2 ⩽ t′ ⩽ k − 1,

then Mjt′−1,t
(λ) = 0 and Mjt′+1,t

(λ) = 0 by definition of Ft and by Proposition 3.10, Parts 2
and 3, we would have

l(Rjt′
) = r(Rjt′−1

) + 1 ⩽ l(Rt) ⩽ r(Rt) ⩽ l(Rjt′+1
)− 1 = r(Rjt′

). (5.42)

Now if Rjt′
⊆ Rb, we would have Rt ⊆ Rjt′

⊆ Rb and Rt ≺ Rb by Proposition 5.2, so we
must have either Rjt′

⊆ R+
b and l(Rb) ⩽ l(Rjt′

) − 1 = r(Rjt′−1
), or Rjt′

⊆ R−
b and r(Rb) ⩾

r(Rjt′
) + 1 = l(Rjt′+1

). However, this means that either {t′ − 1, t′} ⊆ Fb or {t′, t′ + 1} ⊆ Fb,
so by (5.39) we must have Fb = {1, . . . , k}, so Mjt′−1,t

(λ) > 0 and Mjt′+1,t
(λ) > 0, and by

Proposition 5.2, we have

l(Rb) ⩽ r(Rjt′−1
) + 1 = l(Rjt′

) ⩽ l(Rt) ⩽ r(Rt) ⩽ r(Rjt′
) = l(Rjt′+1

)− 1 ⩽ r(Rb) (5.43)

and Rt ≺ Rb by Proposition 5.2 after all. Therefore, if Rjt′
≺ Rb but Rt ⊀ Rb, we must

have t′ = 1 or k and for the same reason, σt′ = 1 or k, but this contradicts our assumption (5.34).
To summarize, we may assume that

if |Ft| ⩾ 2, then Et = Ft = {1, . . . , k}, and if Ft = {t′}, then Rt ≺ Rjt′
, (5.44)

Ma,t(λ) = 0 whenever Ma,jt′
(λ) = 0, and Rt ≺ Rb whenever Rjt′

≺ Rb.

Let t0 and t1 be such that t0 < t1 and {t0, t1} = {σ1, σ2}, and let x = jt0 and y = jt1 . Note
that we have x < y, l(Ry) ⩾ r(Rx) + 1, and Sφx ↮ Sφy . We use induction on l(Ry)− r(Rx).
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If l(Ry) − r(Rx) = 1, then t1 = t0 + 1 and because there is no noncommuting path in λ
from Rx to Ry, we may use Lemma 5.5 to assume that y = x + 1. In this case, it now fol-
lows from Corollary 5.19 that there exists a good substitute for (λ,µ). So we now assume
that l(Ry)− r(Rx) ⩾ 2, so in particular t1 ⩾ t0 +2. Because there is no noncommuting path in
λ from Rjt1−1 to Ry, we may use Lemma 5.5 to assume that y = jt1−1 + 1.

Our plan now is to apply Lemma 5.39 to the rows Ry−1 and Ry to replace λ with a simi-
lar horizontal-strip for which l(Ry) has decreased and r(Rx) has not changed, so that we will
be done by our induction hypothesis on l(Ry) − r(Rx). It remains to check the conditions of
Proposition 5.41.

1. If My−1,t(λ) > 0 and My,t(λ) > 0, then |Ft| ⩾ 2, so by (5.44) we have Et = {1, . . . , k},
so Ry−1 ≺ Rt and Ry ≺ Rt.

2. If My−1,t(λ) > 0 and My,t(λ) = 0, then t1 − 1 ∈ Ft and t1 /∈ Ft, so by (5.44) we must
have Ft = {t1 − 1} and then Rt ≺ Ry−1.

3. If My−1,t(λ) = 0 and My,t(λ) > 0, then t1 − 1 /∈ Ft and t1 ∈ Ft, so by (5.44) we must
have Ft = {t1} and Rt ≺ Ry.

4. If Rt ≺ Ry−1, then t1 − 1 ∈ Ft. By Proposition 3.10, Part 1, and because x < y, we
cannot have both Mx,t(λ) > 0 and My,t(λ) > 0 because then

l(Rt) ⩽ r(Rx) + χ(x > t) and r(Rt) ⩾ l(Ry)− χ(t > y), so (5.45)
|Rt| = r(Rt)− l(Rt) + 1 ⩾ l(Ry)− r(Rx) + 1− χ(t > y)− χ(x > t)

= r(Ry−1) + 1− l(Ry−1) + 1 + 1− χ(t > y)− χ(x > t) > |Ry−1|,

contradicting Rt ≺ Ry−1 by Proposition 5.2. Therefore, either t0 /∈ Ft or t1 /∈ Ft, so
by (5.44) we must have Ft = {t1 − 1} and My,t(λ) = 0. Moreover, if a ∈ A, then in
particular Ma,y(λ) = 0, so by (5.44) we have Ma,t(λ) = 0, and if b ∈ B, then in particular
we have Ry−1 ≺ Rb, so by (5.44) we have Rt ≺ Rb as well.

5. If Rt ≺ Ry, then t1 ∈ Ft. By Proposition 5.2 and because x < y, we cannot
have Mx,t(λ) > 0 because then

l(Rt) ⩽ r(Rx) + χ(x > t) ⩽ l(Ry−1)− 1 + χ(x > t) ⩽ r(Ry−1)− 1 + χ(x > t)
(5.46)

= l(Ry−1)− 1− 1 + χ(x > t) ⩽ l(Ry)− 1− χ(t > y) < l(Ry)− χ(t > y),

contradicting Rt ≺ Ry by Proposition 5.2. Therefore, t0 /∈ Ft, so by (5.44) we must
haveFt = {t1} andMy−1,t(λ) = 0. Moreover, if a ∈ A, then in particularMa,y−1(λ) = 0,
so by (5.44) we have Ma,t(λ) = 0, and if b ∈ B, then in particular we have Ry ≺ Rb, so
by (5.44) we have Rt ≺ Rb as well.

This concludes our verification of the conditions of Proposition 5.41. Therefore, the result
follows by Lemma 5.39 and our induction hypothesis on l(Ry)− r(Rx).
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We now generalize Corollary 5.26 to the case where λ has a pair of strict rows that are not
necessarily adjacent.

Corollary 5.46. Let λ = (R1, . . . , Rn) be a horizontal-strip that satisfies (3.16). If λ has a
strict sequence (Rj1 , . . . , Rjk) such that the pairs (Ri′ , Rj′) are not strict for j1 ⩽ i′ < j′ ⩽ jk,
then λ is good.

Proof. Because λ has a strict sequence (Rj1 , . . . , Rjk) such that the pairs (Ri′ , Rj′) are not strict
for j1 ⩽ i′ < j′ ⩽ jk, we may assume that (Rj1 , . . . , Rjk) is such a strict sequence with jk − j1
minimal, and among such strict sequences, with k minimal. Now if there is a minimal noncom-
muting path in λ from Rjt to Rjt+1 for any 1 ⩽ t ⩽ k − 1, then by Proposition 5.37, there is
either a strict sequence between Rjt and Rjt+1 , contradicting minimality of jk − j1, or there is
some jt < x < jt+1 with l(Rx) = l(Rjt+1) and Rjt+1 ⋨ Rx, but in that case by Proposition 5.35
there is either a strict sequence between nearer rows, contradicting minimality of jk−j1, there is
a shorter strict sequence from Rj1 to Rjk , contradicting minimality of k, or there is a strict pair,
contradicting our hypothesis. Therefore, there is no minimal noncommuting path in λ from Rjt

to Rjt+1 for any 1 ⩽ t ⩽ k − 1.
Now let µ = (S1, . . . , Sn) and φ : Π(λ)

∼−→ Π(µ). By cycling, we may assume without loss
of generality that φh > φjt for every 1 ⩽ t ⩽ k. Because Mjt,jt+1(λ) = 0 for 1 ⩽ t ⩽ k − 1,
the integers l(Sφjt

) for 1 ⩽ t ⩽ k must be distinct, so let σ : {1, . . . , k} → {1, . . . , k} be the
permutation that sorts them in increasing order, in other words

l(Sφjσ1
) < l(Sφjσ2

) < · · · < l(Sφjσk
). (5.47)

Now the sequence (Sφjσ1
, . . . , Sφjσk

) is strict, so by Lemma 5.42 there exists a good substitute
for (λ,µ).

Corollary 5.47. Let λ = (R1, . . . , Rn) be a horizontal-strip that satisfies (3.16). If λ has a pair
of strict rows, then λ is good.

Proof. Because λ has a pair of strict rows, we may assume that (Ri, Rj) is a strict pair with j− i
minimal, in other words the pairs (Ri′ , Rj′) are not strict for i ⩽ i′ < j′ ⩽ j with j′− i′ < j− i.
Also note that if there is no minimal noncommuting path in λ from Ri to Rj , then by Lemma 5.5
we may replace λ with a similar horizontal-strip as necessary to assume that j = i + 1, in
which case we are done by Corollary 5.26. Therefore, we may assume that there is a minimal
noncommuting path in λ from Ri to Rj . By Proposition 5.37, there is either a strict sequence
(Rj1 , . . . , Rjk) inλ such that the pairs (Ri′ , Rj′) are not strict for j1 ⩽ i′ < j′ ⩽ jk, in which case
we are done by Corollary 5.46, or we have Mi,j = 0 and there is i < x < j with l(Rx) = l(Rj)
and Rj ⋨ Rx. However, in the latter case, because the pair (Ri, Rj) is strict, then since Mi,j = 0
we must have Mi,k+Mj,k = |Rk|+1 for some k, but now Mi,k+Mx,k = Mi,k+Mj,k = |Rk|+1
so the pair (Ri, Rx) is strict, contradicting minimality of j − i.

Corollary 5.48. Let λ = (R1, . . . , Rn) be a horizontal-strip that satisfies (3.16). If λ has a
strict sequence (Rj1 , . . . , Rjk), then λ is good.

Proof. By Corollary 5.47, we may assume thatλ has no strict pairs, after which the result follows
by Corollary 5.46.
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Figure 5.7: A nesting horizontal-strip.

By Corollary 5.47 and Corollary 5.48, we may assume in completing the proof of
Lemma 3.23 that there are no strict pairs or strict sequences in λ or any similar horizontal-strip.
It will be convenient to make the following definition.

Definition 5.49. Let λ = (R1, . . . , Rn) be a horizontal-strip. We say that λ is nesting if for
every 1 ⩽ i < j ⩽ n we have either Mi,j = 0, Ri ≺ Rj , or Rj ≺ Ri, and if Mi,j = 0,
then Mi,k +Mj,k ⩽ |Rk| for every k.

Example 5.50. An example of a nesting horizontal-strip is given in Figure 5.7. Informally, every
pair of rows is either disjoint or one is contained in the other.

Corollary 5.51. Let λ = (R1, . . . , Rn) be a horizontal-strip that satisfies (3.16). If λ is not
nesting, then λ is good.

Proof. If λ is not nesting, then there is some 1 ⩽ i < j ⩽ n with either 0 < Mi,j <
min{|Ri|, |Rj|} or Mi,j = 0 and Mi,k + Mj,k ⩾ |Rk| + 1 for some k. By rotating, we may
assume that l(Ri) < l(Rj) so that the pair (Ri, Rj) is strict, and then the result follows from
Corollary 5.47.

We now explore some properties of a nesting horizontal-strip.
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Proposition 5.52. Let λ = (R1, . . . , Rn) be a nesting horizontal-strip.

1. The pairs (Ri, Rj) are not strict for 1 ⩽ i < j ⩽ n.

2. If Ri ≺ Rj and Rj ≺ Rk, then Ri ≺ Rk. In other words, the relation ≺ is transitive on
the rows of λ.

3. If Ri ≺ Rj and Mj,k = 0, then Mi,k = 0.

4. We cannot have i < x < y < j with l(Rx) = l(Rj) = r(Ri)− 1 = r(Ry)− 1, Rj ⋨ Rx,
and R1 ⋨ Ry.

Proof.

1. This follows directly from the definitions of strictness and nesting.

2. Because Mi,j +Mj,k = |Ri| + |Rj| ⩾ |Rj| + 1, then by definition of nesting we cannot
haveMi,k = 0, so we must haveRi ≺ Rk orRk ≺ Ri. IfRk ≺ Ri, then by Proposition 5.2
we have |Rk| ⩽ |Ri| ⩽ |Rj| ⩽ |Rk|, so |Ri| = |Rk| and in fact Ri ≺ Rk as well.

3. BecauseMj,k = 0, by definition of nesting we must haveMi,j+Mi,k = |Ri|+Mi,k ⩽ |Ri|,
so we must have Mi,k = 0.

4. Because the conditions Rj ⋨ Rx and R1 ⋨ Ry imply that |Rx| ⩾ 2 and |Ry| ⩾ 2, then
we would have Mx,y = 1 < min{|Rx|, |Ry|}, contradicting that λ is nesting.

Proposition 5.53. Let λ = (R1, . . . , Rn) be a nesting minimal noncommuting path
with l(R1) < l(Rn), M1,n = 0, and R1 ↔ Rn. Then we have l(Rt+1) = r(Rt) + 1 for ev-
ery 1 ⩽ t ⩽ n− 1.

Example 5.54. Informally, Proposition 5.53 states that if λ is nesting, a minimal noncommuting
path must look like the example below.

λ =

R1

Rn

Proof of Proposition 5.53. If l(Rn−1) > l(Rn), then because l(R1) < l(Rn), we must
have l(Rt−1) < l(Rt) for some maximal 2 ⩽ t ⩽ n − 1. But then we must have Rt−1 ⋨ Rt+1

by Proposition 5.28 and therefore R1 ≺ Rt+1 by Proposition 5.7, Part 1, which is impossible by
Proposition 5.2 because l(R1) < l(Rn) ⩽ l(Rt+1). Therefore, we must have l(Rn−1) < l(Rn),
and more specifically, because Mn−1,n < min{|Rn−1|, |Rn|} by Corollary 3.13, Part 3 and be-
cause λ is nesting, we must have Mn−1,n = 0 and r(Rn−1) = l(Rn) − 1 > r(R1). Similarly,
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by rotating, we must have l(R2) = r(R1) + 1 < l(Rn). Note that if n = 3, then this proves our
claim, so we now use induction on n ⩾ 4.

If l(R1) < l(Rn−1), then because R1 ↔ Rn−1 by minimality of the noncommuting path
and therefore M1,n−1 = 0 by Proposition 3.10, we have by our induction hypothesis
that l(Rt+1) = r(Rt) + 1 for every 1 ⩽ t ⩽ n − 2, which proves our claim. Similarly, by
rotating, we are done if r(R2) < r(Rn). Therefore, the only remaining case to consider is
when l(Rn−1) ⩽ l(R1) and r(R2) ⩾ r(Rn). However, we would have R1 ≺ Rn−1 and Rn ≺ R2

by Proposition 5.2, and

l(Rn−1) ⩽ l(R1) ⩽ r(R1) + 1 = l(R2) ⩽ r(Rn−1) = l(Rn)− 1 ⩽ r(Rn) ⩽ r(R2), (5.48)

and therefore M2,n−1 > 0 by Proposition 3.10 Parts 2 and 3. Because λ is nesting, we must have
either R2 ≺ Rn−1 or Rn−1 ≺ R2, but if R2 ≺ Rn−1, we have M2,n−1 +M2,n = |R2| + |Rn| ⩾
|R2| + 1, and if Rn−1 ≺ R2, we have M1,n−1 + M2,n−1 = |R1| + |Rn−1| ⩾ |Rn−1| + 1, a
contradiction in either case. This completes the proof.

We are at long last ready to prove Lemma 3.23, which implies Theorem 2.7. The strategy is
as follows. We will use commuting and cycling to rewrite λ so that the bottom two rows are in
the desired form. If the corresponding two rows Si and Sj of µ do not commute, then we are
done by Corollary 5.19, and if there is no minimal noncommuting path between them, then we
can again use commuting and cycling to bring them closer together until they do not commute. If
there is a minimal noncommuting path (Si = Si1 , . . . , Sik = Sj), then because we may assume
that µ is nesting, Proposition 5.53 specifies the structure of these rows. In this case, we will use
an argument similar to that of the proof of Lemma 5.42 to locally rotate pairs of rows (Sit−1 , Sit)
of µ to again bring Sj toward Si until they do not commute.

Proof of Lemma 3.23. We first note that by Corollary 5.48 and Corollary 5.51, we may assume
that λ is nesting and has no strict pairs or strict sequences. We will first show that there is
a similar horizontal-strip λ′ = (R′

1, . . . , R
′
n) ∈ S(λ) with l(R′

1) < l(R′
2) and R′

1 ↮ R′
2.

Because n(λ)−M(λ) ⩾ 1, by (3.7) we have Mi,j(λ) < min{|Ri|, |Rj|} for some 1⩽ i<j⩽n,
and because λ is nesting, we must in fact have Mi,j(λ) = 0. By rotating and cycling, we may
assume without loss of generality that i = 1 and l(R1) < l(Rj), and then l(Rj) ⩾ r(R1) + 1 by
Proposition 3.10, Parts 2 and 3.

Suppose that l(Rj)−r(R1) = 1, so that Ri ↮ Rj . If there is a minimal noncommuting path
in λ from R1 to Rj , then by Proposition 5.37, either λ has a strict sequence, contradicting our
assumption, or there is 1 < x < y < j with l(Rx) = l(Rj) = r(Ri)− 1 = r(Ry)− 1, Rj ⋨ Rx,
and R1 ⋨ Ry, contradicting that λ is nesting by Proposition 5.52, Part 4. Therefore, there is
no minimal noncommuting path in λ from R1 to Rj , so by Lemma 5.5 we can find our desired
horizontal-strip λ′. We now suppose that l(Rj) − r(R1) ⩾ 2, which means that R1 ↔ Rj by
Proposition 3.10, Part 1, and we use induction on l(Rj)− r(Ri).

If there is a minimal noncommuting path (R1 = Ri1 , . . . , Rik = Rj) in λ from R1 to Rj ,
then because R1 ↔ Rj we have by Proposition 5.53 that l(Ri2)− r(R1) = 1 and we can repeat
the above argument with the rows R1 and Ri2 . If there is no minimal noncommuting path in λ
from R1 to Rj , then by commuting and cycling we have (R1,. . . ,Rj−1,Rj+1,. . . ,Rn,R

−
j )∈S(λ)

and l(R−
j )−r(R1) < l(Rj)−r(R1), so we are done by our induction hypothesis on l(Rj)−r(R1).
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Therefore, there is indeed a horizontal-strip λ′ = (R′
1, . . . , R

′
n) ∈ S(λ) with l(R′

1) < l(R′
2)

and R′
1 ↮ R′

2.
We will now strengthen the conditions on our choice of λ′. Consider the set

S∗(λ) = {λ′ = (R′
1, . . . , R

′
n) ∈ S(λ) : l(R′

1) < l(R′
2), R

′
1 ↮ R′

2} (5.49)

and for λ′ = (R′
1, . . . , R

′
n) ∈ S∗(λ), define the integer

h(λ′) = |{3 ⩽ t ⩽ n : R′
1 ≺ R′

t, R
′
2 ≺ R′

t}|. (5.50)

Because we have shown that the set S∗(λ) is nonempty and because we have a uniform
bound h(λ′) ⩽ n − 2, we may let λ′ = (R′

1, . . . , R
′
n) ∈ S∗(λ) be such that h(λ′) is maxi-

mal, and among those, with |R′
2| maximal. Let µ = (S1, . . . , Sn) and φ : Π(λ′)

∼−→ Π(µ), and
note that again by Corollary 5.48 and Corollary 5.51 we may assume that µ is nesting and has
no strict pairs or strict sequences.

Let i = φ1 and j = φ2, and note that by cycling and rotating we may assume that i < j
and l(Si) < l(Sj), and then because Mi,j(µ) = 0, we have l(Sj) ⩾ r(Si) + 1 by Proposi-
tion 3.10, Parts 2 and 3. If l(Sj)− r(Si) = 1, then Si ↮ Sj by Proposition 3.10, Part 3, so there
exists a good substitute for (λ,µ) by Corollary 5.19 and we would be done. We now suppose
that l(Sj)−r(Si) ⩾ 2, which means that Si ↔ Sj by Proposition 3.10, Part 1, and we use induc-
tion on l(Sj)−r(Si). If there is no minimal noncommuting path inµ from Si to Sj , then by com-
muting and cycling we have (Si, . . . , Sj−1, Sj+1, . . . , Sn, S

−
1 , . . . , S

−
j ) ∈ S(µ)

and l(S−
j )−r(Si) < l(Sj)−r(Si), so we are done by our induction hypothesis on l(Sj)−r(Si).

Therefore, we may assume that there is a minimal noncommuting path (Si = Si1 , . . . , Sik = Sj)
in µ from Si to Sj . Because µ is nesting and Si ↔ Sj , we have that l(Sit+1) = r(Sit) + 1
for every 1 ⩽ t ⩽ k − 1 by Proposition 5.53. Also note that if there is a minimal non-
commuting path in µ from Sit to Sit+1 for any 1 ⩽ t ⩽ k − 1, then by Proposition 5.37
either µ has a strict sequence, contradicting our assumption, or there is 1 < x < y < j
with l(Sx) = l(Sj) = r(S1) − 1 = r(Sy) − 1, Sj ⋨ Sx, and S1 ⋨ Sy, contradicting that µ
is nesting by Proposition 5.52, Part 4. Therefore, there is no minimal noncommuting path in µ
from Sit to Sit+1 for any 1 ⩽ t ⩽ k − 1,

We now make the following useful observation. For every row R′
t of λ′ with R′

1 ≺ R′
t

and R′
2 ≺ R′

t, we have Si ≺ Sφt and Sj ≺ Sφt and therefore by Proposition 5.2 we have

l(Sφt) ⩽ l(S1)+1 ⩽ r(S1)+1 = l(Si2) ⩽ r(Sik−1
) = l(Sj)−1 ⩽ r(Sj)−1 ⩽ r(Sφt) (5.51)

and therefore Sit′
≺ Sφt for every 1 ⩽ t′ ⩽ k.

Now suppose that there is some t with Sik−1
⋨ St and Mj,t(µ) = 0. We must have

r(St) ⩽ l(Sj) − 1 = r(Sik−1
) and by Proposition 5.2, l(St) ⩽ l(Sik−1

) − 1 = r(Sik−2
),

so Mik−2,t(µ) > 0. Because λ is nesting, this means that either Sik−2
≺ St or St ≺ Sik−2

,
but if St ≺ Sik−2

we would have Mik−2,t(µ) + Mik−1,t(µ) = |St| + |Sik−1
| ⩾ |St| + 1 and

the pair (Sik−2
, Sik−1

) would be strict, a contradiction by Proposition 5.52, Part 1. Therefore,
we must have Sik−2

≺ St. Because there is no minimal noncommuting path in µ from Sik−2

to Sik−1
, we may cycle and use Lemma 5.5 to replace µ with a similar horizontal-strip to assume
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that ik−2 = 1 and ik−1 = 2, but now we would have h(µ) > h(λ′) because St is counted only
by h(µ), contradicting maximality of h(λ′). Therefore, we may assume that

there is no t with Sik−1
⋨ St and Mj,t(µ) = 0. (5.52)

Similarly, now suppose that there is some t with Sj ⋨ St and Mik−1,t(µ) = 0. Because there
is no minimal noncommuting path in µ from Sik−1

to Sj , we may cycle and use Lemma 5.5 to
replace µ with a similar horizontal-strip to assume that ik−1 = 1 and j = 2. Because Sj ⋨ St

and Mik−1,t(µ) = 0, by Proposition 5.2, we have l(St) = l(Sj) and |St| > |Sj|. Now if there is a
minimal noncommuting path in µ from S1 to St, then as before, by Proposition 5.37 either µ has
a strict sequence, contradicting our assumption, or we contradict that µ is nesting. Therefore,
there is no minimal noncommuting path in µ from S1 to St, so by Lemma 5.5 we may replace µ
by a similar horizontal-strip to instead assume that t = 2. We also note that for every row St′ ofµ
with S1 ≺ St′ and Sj ≺ St′ , we must haveMt,t′(µ) > 0 and therefore either St ≺ St′ or St′ ≺ St.
However, if St′ ≺ St, then we would have M1,t′(µ) +Mt,t′(µ) = |S1| + |St′ | ⩾ |St′ | + 1 and
the pair (S1, St) would be strict, a contradiction, and therefore St ≺ St′ . However, we now
have h(µ) ⩾ h(λ′) and |S2| > |Sj| = |R′

2|, contradicting either the maximality of h(λ′) or the
maximality of |R′

2|. Therefore, we may assume that

there is no t with Sj ⋨ St and Mik−1,t(µ) = 0. (5.53)

Because there is no minimal noncommuting path in µ from Sik−1
to Sj , we may use

Lemma 5.5 to replace µ by a similar horizontal-strip to assume that j = ik−1 + 1. Our plan
is now to apply Lemma 5.39 to the rows Sj−1 and Sj to replace µ by a similar horizontal-strip
for which l(Sj) has decreased and r(Si) has not changed, so that we will be done by our induction
hypothesis on l(Sj)− r(Si). It remains to check the conditions of Proposition 5.41.

1. If Mj−1,t(µ) > 0 and Mj,t(µ) > 0, then because µ is nesting we must have Sj−1 ≺ St

or St ≺ Sj−1. If St ≺ Sj−1, then Mj−1,t(µ) + Mj,t(µ) = |St| + Mj,t(µ) ⩾ |St| + 1
and the pair (Sj−1, Sj) would be strict, contradicting that µ is nesting. Therefore, we must
have Sj−1 ≺ St and similarly we must have Sj ≺ St.

2. If Mj−1,t(µ) > 0 and Mj,t(µ) = 0, then because µ is nesting we must have Sj−1 ≺ St

or St ≺ Sj−1, but by (5.52) we cannot have Sj−1 ⋨ St, so we must have St ≺ Sj−1.

3. If Mj−1,t(µ) = 0 and Mj,t(µ) > 0, then because µ is nesting we must have Sj ≺ St

or St ≺ Sj , but by (5.53) we cannot have Sj ⋨ St, so we must have St ≺ Sj .

4. IfSt ≺ Sj−1, then by Proposition 5.52, Part 3, we must haveMj,t(µ) = 0 andMa,t(µ) = 0
for every a ∈ A. Moreover, if b ∈ B, then Sj−1 ≺ Sb and therefore St ≺ Sb because by
Proposition 5.52, Part 2, the relation ≺ is transitive.

5. IfSt ≺ Sj , then by Proposition 5.52, Part 3, we must haveMj−1,t(µ) = 0 andMa,t(µ) = 0
for every a ∈ A. Moreover, if b ∈ B, then Sj ≺ Sb and therefore St ≺ Sb because by
Proposition 5.52, Part 2, the relation ≺ is transitive.
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This concludes our verification of the conditions of Proposition 5.41. Therefore, the result
follows by Lemma 5.39 and our induction hypothesis on l(Sj)−r(Si). This completes the proof
of Lemma 3.23, and therefore our proof of Theorem 2.7.
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