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A Framework for Robust Assimilation of Potentially Malign
Third-Party Data, and its Statistical Meaning

Matthew A. Wright and Roberto Horowitz

Abstract—This paper presents a model-based method for
fusing data from multiple sensors with a hypothesis-test-based
component for rejecting potentially faulty or otherwise malign
data. Our framework is based on an extension of the classic
particle filter algorithm for real-time state estimation of uncertain
systems with nonlinear dynamics with partial and noisy observa-
tions. This extension, based on classical statistical theories, utilizes
statistical tests against the system’s observation model. We discuss
the application of the two major statistical testing frameworks,
Fisherian significance testing and Neyman-Pearsonian hypothesis
testing, to the Monte Carlo and sensor fusion settings. The Monte
Carlo Neyman-Pearson test we develop is useful when one has a
reliable model of faulty data, while the Fisher one is applicable
when one may not have a model of faults, which may occur when
dealing with third-party data, like GNSS data of transportation
system users. These statistical tests can be combined with a
particle filter to obtain a Monte Carlo state estimation scheme
that is robust to faulty or outlier data. We present a synthetic
freeway traffic state estimation problem where the filters are able
to reject simulated faulty GNSS measurements. The fault-model-
free Fisher filter, while underperforming the Neyman-Pearson
one when the latter has an accurate fault model, outperforms it
when the assumed fault model is incorrect.

I. INTRODUCTION

Intelligent transportation systems (ITS) have long relied
on the use of real-time data to enable reactive and proactive
operations and control. The widespread and growing use of real-
time data, however, brings to ITS a problem that affects many
domains in information sciences and engineering: these systems
and methods can be fragile when their data are incorrect, either
due to faults in the sensors or a feeding-in of malicious data
by a hostile attacker (“spoofing”).

ITS researchers have shown that existing real-time control
schemes are sensitive to errors in data. Some recent research
even shows that faulty data can lead to actively harmful
control. These vulnerabilities exist at both the small-scale,
individual-vehicle level, and the multi-vehicle, infrastructural
coordinative level. At the smaller scale, for example, [2]
recently demonstrated the capability to drive a ship off-course
via spoofed global navigation satellite system (GNSS) signals,
evading detection by both the crew and a statistical spoofing
detector. At the broader, infrastructural level, [24] showed
how common road traffic control systems and algorithms (e.g.,
ramp meters and the programs that control the metering rate
in response to observed traffic volumes) can be manipulated
into causing complex and costly congestion patterns by taking
control of their input data.
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In this paper, we focus more on the larger-scale end of
this spectrum. Types of ITS applications at this scale include
the above-mentioned road traffic control systems, as well as
fleet management and tracking systems in industry. Public and
private management entities have both been quick to adopt the
use of data from GNSS due to their ubiquitous availability and
– especially for public bodies that wish to avoid the need for
expensive installation and maintenance of sensing infrastructure
– relatively low cost [16]. Many authors in the ITS community
have investigated the use of vehicle-carried GNSS transponders
for real-time road traffic observation and control [8], [18], [26],
[27].

The work described in this paper was originally inspired by
technical problems we encountered in our prior work in this
area. In [28], [29], we report on our efforts to use anonymized
third-party data from connected vehicles to estimate the state
of traffic on a freeway. That is, the assimilation of records
consisting of times, positions, and speeds from transponders
near the freeway, but without certainty of the correctness
of the data. For example, upon manual inspection, several
records showed transponders with near-zero speeds in times
and spaces we believed were not in congestion (e.g., possibly a
stopped car), unrealistically fast movement, or speeds that
better matched the congestion patterns on the freeway’s
opposite direction. Using a standard particle filter [12] for
state estimation, when some data are of very low probability,
led to divergence of the state estimate from the true state, and
in some extreme cases, numerical errors caused by floating-
point underflow. In those situations, we want to be able to
reject these data that would not improve our state estimate, in
a principled manner.

We also sought to develop a method that could reject these
malign measurements without having models for all types of
faulty data. This paper describes two modifications to a familiar
estimation algorithm, one applicable to the situation where a
model of faults exists; and one where such a model does not
exist, and the engineer only has a model for sensors’ correct
behavior. These two modifications are based on two different
mathematical theories of hypothesis testing.

In the broader picture, we argue that robustness to faulty
data is essential to ITS schemes that make use of GNSS.
ITS schemes often make use of GNSS position, velocity, and
time (PVT) measurements, which are susceptible to many
sources of error. These error sources include, to name a
few, multipath propagation, non-line-of-sight tracking, signal
blockage, tropospheric and ionospheric conditions, and a
multiplicity of navigation filter implementations [13]. In other
words, the presence of noise or faults in GNSS data for ITS
could be considered the norm, rather than the exception, and
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system robustness to both modeled and unmodeled faults is
desirable.

The rest of this paper is organized as follows. Section II
introduces the framework of the filtering problem that forms
the base for many studies of real-time transportation system
estimation [8], [26], and reviews the popular particle filter
algorithm that forms the base of our robustified estimation
procedure. Section III briefly reviews the theoretical and his-
torical background of hypothesis testing (which forms the core
of our robustification), and introduces the two most common
frameworks: Fisherian and Neyman-Pearsonian. Section IV
goes into the mathematical details of the two frameworks, and
describes modifications necessary to apply them to a Monte
Carlo scheme like the particle filter. Section V merges the
standard particle filter with our testing frameworks developed
in Section IV. Section VI recalls our motivating problem of
freeway traffic state estimation using third-party data, and
presents some simulation results of the two testing-robustified
particle filters on this difficult nonlinear estimation problem.
Section VII concludes with some discussion on what we feel
is this method’s interesting fusion of data and model.

II. BACKGROUND OF THE FILTERING PROBLEM

A. State Estimation of Dynamic Systems

We use notation common to nonlinear discrete-time stochas-
tic dynamic systems. Suppose we have some stateful system
whose state evolves in time. Let xk ∈ RN denote the state
vector of the system at time k. The system state is not
fully observed; instead what is observed at time k is a
measurement vector yk ∈ RMk (the dimensionality having
a subscript k implies we may obtain varying numbers of
measurements at different times k). The state and observation
vectors’ temporal behavior are governed by stochastic update
and output equations,

xk = Fθ (xk−1)

yk = Gθ (xk)
(1)

with θ a parameter vector describing the randomness or pro-
cess/measurement noise of F and G. An equivalent probabilistic
notation may rewrite (1) as

Xk| (Xk−1 = xk−1) ∼ fθ (xk|xk−1) (2a)
Yk| (Xk = xk) ∼ gθ (yk|xk) (2b)

where, following conventions of probability, a capital letter
(e.g., Xk) denotes a random vector and a lower-case letter (e.g.,
xk) denotes the value of a particular realization. The functions
on the RHS’s of (2) are probability density functions (PDFs).
More precisely, fθ(·) and gθ(·) are the PDFs of the conditional
distributions for the random variables Xk given Xk−1 and Yk
given Xk, respectively.

The model-based filtering problem, a classic problem in
stochastic systems, is the problem of estimating the unknown
system state Xk(∀k) from the known observation vectors Yk
[6]. This is often done iteratively forward in time, repeating a
two-step process at each successive time k.

The first step is called the prediction step. Assuming that
we have an estimate of the PDF of the random variable

Xk−1|Y0:k−1 from the previous timestep, where Y0:k−1 is
shorthand for the set {Y0, Y1, . . . , Yk−2, Yk−1}, we can use
(2a) to obtain

pθ(xk|y0:k−1) =

∫
fθ(xk|xk−1)pθ(xk−1|y0:k−1)dxk−1. (3)

The second step is called the filtering step or update step.
Here, we use the obtained measurements yk and (2b) to
compute

pθ(xk|y0:k) =
pθ(xk|y0:k−1)gθ(yk|xk)

pθ(yk|y0:k−1)
(4)

where

pθ(yk|y0:k−1) =

∫
pθ(xk|y0:k−1)gθ(yk|xk)dxk. (5)

Note that (4) is a particular statement of Bayes’ rule,
with pθ(xk|y0:k−1), gθ(yk|xk), pθ(yk|y0:k−1), and pθ(xk|y0:k)
playing the role of the prior, likelihood, marginal likelihood,
and posterior PDFs, respectively. Because of this, the itera-
tive predict-update approach to filtering is sometimes called
recursive Bayesian estimation [12].

For some simple classes of systems fθ(·), the computations
in (3)-(5) are computable in closed form (the most well known
example being that if both fθ(·) and gθ(·) are affine in the state
xk with additive white Gaussian noise, all PDFs in the recursion
(3)-(5) can be computed exactly through simple matrix algebra,
and is known as the Kalman Filter [14]). In more general
settings with more complex system and noise behaviors, some
numerical approximation is required.

B. Particle Filter

One popular approximation method when the integrals in
(3) and (5) are difficult or computationally intractable is the
particle filter [1], [6], [12]. A particle filter may be used even
when there is no closed-form expression for fθ(·) (precluding
many classic numerical integration schemes), but the PDF
may be sampled repeatedly, such as by running a stochastic
simulation many times.

A particle filter is constructed by replacing the PDFs for
Xk in the filtering equations (3)-(5) with approximate PDFs,
which we will denote with a hat (e.g., p̂θ(·) for pθ(·)). These
approximate PDFs are made up of many discrete samples (also
called particles) from the continuous PDF. The particles are
generated by repeatedly sampling from fθ(·).

In other words, a particle filter can approximate continuous
PDFs via discrete probability mass functions (PMFs). For
example, a particle filter approximation of the posterior PDF
pθ(xk|y0:k) (4) may be written

pθ(xk|y0:k) ≈ p̂θ(xk|y0:k) =

P∑
p=1

pθ(x
p
k|y0:k)δxpk(xk) (6)

where p ∈ {1, . . . , P} denotes individual particles, or atoms of
the discrete PMF, and δxpk(xk) denotes a Dirac delta that places
a unit mass on the point xpk (we use the subscript as a notational
shorthand for the usual notation, δxpk(xk) , δ(xk−xpk), where
xk denotes the argument to the “function” δ(·) and xpk is the
offset that moves the unit mass from xk = 0).
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Reviewing the two items in the summand of (6), we see that
individual particles have an atom of probability mass placed
in the state space of the system, xpk (where the superscript
p denotes the pth particle), and an associated probability
pθ(x

p
k|y0:k). Summing up these particles results in a PMF

with P discrete points, each with an associated probability.
Much like in the theoretical, closed-form version of recursive

filtering (3)-(5), the particle filter proceeds in an iterative
predict-then-update manner. As before, to estimate the system
state at timestep k, we assume that we start with an approximate
PDF from the previous timestep, p̂θ(xk−1|y0:k−1) (note the
hat indicating it is an approximation). This approximation has
P individual particles. We can obtain a particle filter estimate
of the prior PDF, p̂θ(xk|y0:k−1), by plugging each particle’s
state value xpk−1 into the stochastic system equation Fθ(xk−1)
(1) [12],

xpk = Fθ(xpk−1)

where the randomness of Fθ(·) means that

Fθ(xpk−1) ∼ fθ(xk|xpk−1).

Then, a particle filter approximation for the prior PDF is

pθ(xk|y0:k−1) =

∫
fθ(xk|xk−1)pθ(xk−1|y0:k−1)dxk−1

≈
P∑
p=1

pθ(x
p
k−1|y0:k−1)δFθ(xpk−1)(xk)

=

P∑
p=1

pθ(x
p
k|y0:k−1)δxpk(xk) (7)

= p̂θ(xk|y0:k−1)

and the particle filter approximation for the posterior PDF is
found by plugging (7) into (4),

pθ(xk|y0:k) =
pθ(xk|y0:k−1)gθ(yk|xk)

pθ(yk|y0:k−1)

≈ p̂θ(xk|y0:k−1)gθ(yk|xk)

pθ(yk|y0:k−1)

=

∑P
p=1 pθ(x

p
k|y0:k−1)δxpk(xk)gθ(yk|xpk)

pθ(yk|y0:k−1)

=

∑P
p=1 pθ(x

p
k, yk|y0:k−1)δxpk(xk)

pθ(yk|y0:k−1)
(8)

= p̂θ(xk|y0:k).

This posterior approximate PDF is thus made up of the
same collection of Dirac deltas as the prior approximate PDF,
p̂θ(xk|y0:k−1), but with updated weights to reflect each point’s
posterior probability, after assimilating the measurement yk
through the likelihood.

As has been mentioned, the use of the particle filter
avoids having to explicitly calculate difficult integrals. Of
particular relevance is the calculation of the marginal likelihood
pθ(yk|y0:k−1). Instead of using (5), we use the fact that in
a PMF, the probabilities of all points must sum to one, to
normalize the un-normalized probabilities pθ(x

p
k|y0:k) in (8),

pθ(yk|y0:k−1) ≈
P∑
p=1

pθ(x
p
k|y0:k). (9)

In implementations of a particle filter, (8)-(9) make up
the filtering step that is used in practice. However, as of
yet, we have not brought into consideration the problem
of measurement fault detection. When we introduce the
framework for incorporating hypothesis tests for measurement
fault detection in Section V, we will use a different update
computation, one that includes an additional hypothesis-testing
step.

As an important side note, we have omitted discussion of
the particle filter’s post-update resampling step because it is
not immediately relevant here. See, e.g., [6], for details.

III. STATISTICAL TESTING: AN INTRODUCTION

Most readers of scientific literature are familiar with hypoth-
esis testing in the form of reports of “p-values” and “statistical
significance” in the context of discussions of, e.g., medical
research. The most popular form of hypothesis test is the so-
called “null hypothesis significance test” (NHST) [25]. In a
NHST, a null hypothesis of, loosely speaking, “no relation”
or “no correlation” is proposed. Then, a p-value for the data
under this null hypothesis is computed, and if it is less than
a hard boundary of, e.g., 5%, the test is said to have shown
“statistical significance,” and a specified alternative hypothesis
is accepted. The NHST is actually a fusion of two distinct
theories [25]: significance testing, due to Fisher [9]–[11], and
hypothesis testing, due to Neyman and Pearson [21]–[23].

It should be noted that concepts that are rooted in one of
the two statistical testing frameworks, but do not make sense
in the other, are often discussed alongside each other in the
NHST presentation. For example, the Fisher framework only
considers one hypothesis, the null hypothesis. On the other
hand, in the Neyman-Pearson model, multiple hypotheses exist,
along with Type I and Type II (also called false positive and
false negative, respectively) error rates and statistical power,
but p-values are absent (p-values are explicitly defined only in
the Fisherian framework) [25].

The implications of this dichotomy are more than just
philosophical and terminological: for some problems, strict
adherence to one theory will lead to a different statistical test
than would be derived using the other (see [17] for more
discussion on the degree of these differences).

IV. STATISTICAL TESTING FOR MEASUREMENT REJECTION

A. Notation

For this section, where we review classical tests for mea-
surement rejection and introduce new Monte-Carlo-based tests,
we will use a somewhat simpler notation.

Suppose that we have data D = {d1, . . . , dn}, which come
from a distribution with PDF pθ(D). We use D instead of
the classical X for data to avoid confusion with our system
state variable. The PDF has an unknown parameter (or set of
parameters) θ. The testing problem is to evaluate the likelihood
of our data for certain values of θ and make decisions about
whether those θ values should be used or not.

The remainder of this Section deals with the mathematical
details of both the Fisherian and Neyman-Pearsonian theories
described above. We will begin with the Neyman-Pearson
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framework as its basic elements are likely more familiar to a
reader with an applied knowledge of statistics.

B. Neyman-Pearsonian “hypothesis testing”
In this framework, in addition to our data D and PDF pθ(D),

we have two competing hypotheses: H0 : θ = θ0 and H1 :
θ = θ1. In this case, where both hypotheses fully specify the
form of the likelihood pθ(D) (since each hypothesis consists
of only a single point for θ), a ratio of the two hypotheses’
likelihoods might take the form

∆(D) =
pθ1(D)

pθ0(D)
. (10)

A hypothesis test in this case is often called a “simple-vs-
simple” hypothesis test (a simple hypothesis is one that fully
specifies the model parameters). For the remainder of this
discussion, we will focus on the simple-vs-simple tests. The
formal extension to compound hypotheses is a part of future
work.

A well-known result called the Neyman-Pearson Lemma
[22] states that, for a given simple-vs-simple hypothesis testing
problem, the optimal test (in that it minimizes the Type II
error rate among all tests with a given Type I error rate1) is
a likelihood ratio test. A likelihood ratio test is one where
the likelihood ratio ∆(D) is the test statistic of interest. A
likelihood ratio test using the likelihood ratio given in (10) has
the form

ψ(D) =

{
1 if ∆(D) < c

0 if ∆(D) > c
(11)

for some constant c. The test prescribes that, of the two
hypotheses, we accept Hψ(D).

The constant c in (11) is chosen to set the likelihood ratio
test to have a certain Type I error rate. This selected Type
I error rate is called the test’s significance level and usually
given the symbol α.

When the integral is computable, the constant c just men-
tioned is found by solving for it as a function of α in

Eθ0ψ(D) =

∫
ψ(D)pθ0(D) dD

= Pθ0(∆(D) < c) = α

(12)

where we use the fact that the expectation of an indicator
function (e.g., ψ(D) (11)) is equal to the integral of the PDF
pθ0 over the set where the indicator function equals one.

Of critical importance in (12) is that the PDF of integration
for ψ(D) is the likelihood under H0. This is because the
Type I error rate is defined as a rejection of H0 when H0 is
actually true. This choice is made because, conventionally, H0

represents the status quo, or a prior belief about θ before any
evidence, and practitioners are interested in tests that have a
small error probability when H0 is correct [15].

Once we have selected our α (and therefore our c), we collect
the data D, evaluate our likelihood ratio (10), and select either
H0 or H1 depending on the value of ψ(D) (11).

1The Type I (“false positive”) error rate, P (Reject H0|H0 true), is the
mathematical probability that H0 is rejected, conditioned on it being true;
and the Type II (“false negative”) error rate, P (Accept H0|H0 false), is the
probability that H0 is accepted, conditioned on it being false.

C. Monte-Carlo Neyman-Pearsonian Likelihood Ratio Tests

We now turn to how we must modify the Neyman-Pearson
likelihood ratio test framework for use in our Monte Carlo
framework. Suppose that rather than a known likelihood pθ(D),
we only have a set of samples di ∼ pθ(D), i ∈ {1, . . . , n}, as
well as their associated likelihoods under the null hypothesis
pθ0(di). Then, while we cannot solve the integral in (12) in
closed form, we can still approximate it via Monte Carlo
simulation,

Eθ0ψ(D) =

∫
ψ(D)pθ0(D) dD

≈
n∑
i=1

ψ(di)pθ0(di)

= Êθ0ψ(D).

(13)

Designing our test for a specific significance level (i.e.,
choosing c) in this case does not make sense, due to a lack
of a closed-form integral equation in which to solve for c as
a function of α. Instead, we propose to select either H0 or
H1 based on the observed likelihood ratio statistic directly.
The general idea is as follows. Considering (12) under the
classic Neyman-Pearson framework, we would select c so that
an α fraction of the probability mass distributed by p̂θ0(D)
returns values of D s.t. ψ(D) = 1 (this is what is shown in the
second line of (12)). Under the empirical approximation (13),
on the other hand, we have a finite amount of points, and can
easily compute whether ∆(di) is below or above 1 for every
i. The distribution of the probability mass in the empirical
distribution is itself defined by our known sample weights
pθ0(di). Therefore, we can determine whether at least an α
portion of the probability mass under the empirical distribution
recommends selecting H1 by simply noting which samples
have a higher likelihood under H1 than under H0, and then
adding up those samples’ H0-probabilities pθ0(di) and seeing
whether this sum is greater or smaller than α.

Mathematically, the empirical Neyman-Pearson likelihood
ratio test we propose is

ψ̂(D) =

{
1 if

∑n
i=1 1{∆>1}(di)pθ0(di) < α

0 otherwise
(14)

where

1{∆>1}(di) =

{
1 if ∆(di) > 1

0 otherwise
(15)

is an indicator function of whether di shows a higher likelihood
under H1 than under H0.

D. Fisherian “significance testing”

As mentioned above, the Fisherian formulation differs from
the Neyman-Pearsonian one in several ways. One important
difference is that it specifies the selection of only a single
hypothesis, the null hypothesis H0, which specifies the PDF
as pθ0(D). Usually, in a significance test, the null chosen is
meant to be more interesting than the common “no relationship”
hypothesis test, and reflects some a priori knowledge. Observ-
ing that the data D do not fit well with the null hypothesis



5

H0 is meant to lead to reconsideration and indication to the
practitioner that their prior assumptions used in crafting H0

should be re-evaluated [25].
The Fisherian framework calls for the calculation of a test

statistic of the data, T (D). Unlike the simple-vs-simple case
in the Neyman-Pearson framework (where we can apply the
Neyman-Pearson Lemma), the optimal test statistic is not
immediately given. Instead, its form depends on the particular
form of the likelihood pθ0(D).

Here, we will assume that the null hypothesis H0 is simple
in the Neyman-Pearsonian sense, in that it fully specifies the
likelihood: H0 : θ = θ0. Then, we want to compute the tail
probability of the observed test statistic T (D) under H0. This
quantity is the p-value. Whether this tail probability will be a
one-sided or two-sided value again depends on the particular
form of the PDF pθ(D). For the particular example of a two-
sided test, the p-value (assuming T (D) ∈ R) will be

p-value = Pθ0 (T < −|T (d)|) + Pθ0 (T > |T (d)|)

=

∫ −|T (d)|

−∞
pθ0(T (D)) dD +

∫ ∞
|T (d)|

pθ0(T (D)) dD
(16)

where pθ0(T (D)) is the PDF of the statistic T (also called the
statistic’s sampling distribution) under H0 and the lower-case
formatting of d in T (d) indicates that it is the actually-observed
value of the random statistic T (D).

For some common sampling distributions like the univariate
Gaussian, Student’s t, and χ2 distributions, the solutions to the
tail probability integrals in (16) are available in the familiar
statistical testing reference tables, or can be readily computed
via statistical software.

E. Monte-Carlo Fisherian Significance Tests

We can move from the theoretical framework of continuous
integrals with closed-form solutions (16) to the Monte Carlo
framework using similar arguments as in Section IV-C.

Considering (16), we see the same type of integral we had in
(12) (recalling that the test term ψ(D) (11) acted as an indicator
function for a one-sided interval, effectively performing the
same function as the one-sided limits of integration in (16)).
Therefore, using similar arguments as before, we can get an
approximation of the Fisherian p-value from (16) (noting the
finite integration bound T (d) is replaced with the approximation
T̂ ) as

p̂-value =

∫ −|T̂ |
−∞

pθ0(T (D)) dD+

∫ ∞
|T̂ |

pθ0(T (D)) dD (17)

where

T̂ =

n∑
i=1

T (di)pθ0(di). (18)

Like in the Monte Carlo Neyman-Pearson framework, we have
again created a weighted-average statistic using our weighted-
average approximation of the PDF for the data.

Fisher himself advocated against the use of fixed levels and
hard accept/reject boundaries, but instead suggested reporting
the p-values directly (for more on this contrast, see, e.g., the
discussions in [17, Sec. 4], [25, p. 415]). However, for our

current purposes this is not easily implementable because in
our filtering context, we are trying to make a decision as to
whether to accept or reject a measurement as we receive it.
Taking a “soft” view, and considering a range of state space
values based on our current range of belief of whether we
should accept or reject H0, while potentially giving us a view
of a broader range of possibilities (and separate measurement
hypotheses) that we could revisit in light of future data, leads to
a blow-up when the number of separate sensors increase [29].
Instead, for expedience, in what follows we adopt the Neyman-
Pearson and null hypothesis significance test and select a hard
significance level α, and reject or accept the measurement based
on whether our estimated p-value (17) is larger or smaller. A
more “inductive” approach, closer to the spirit of the original
Fisherian significance test, that updates H0 based on repeated
tests of measurements from the same sensor, is an avenue for
future work.

V. A PROBABILISTIC OUTLIER-REJECTING PARTICLE
FILTER

This section unifies the particle filtering framework reviewed
in Section II and the hypothesis testing methods developed in
Section IV. As mentioned in Section IV-A, we will unify these
ideas in the notation of the state estimation problem. In this
paper, we will not exhaustively define all PDFs of interest in the
interest of readability. See [29] for a more lengthy discussion
of a precursor to the Fisher-type hypothesis-testing particle
filter discussed in the present paper.

Recall the filtering or update step in the particle filtering
algorithm (8). In our prior discussion, we considered a
measurement likelihood gθ(yk|xk) (2b). In this notation, we
are stating that the random measurement vector Yk|Xk has
a joint distribution across all dimensions. This makes sense
if the measurement noises of the different elements of the
measurement vector are correlated or otherwise dependent.

Considering our problem of needing to assimilate data from
multiple third-party sensors, though, it makes sense to assume
a conditional independence of the measurements. If we say
that at time k, we receive measurements from M sensors, with
sensor j’s measurement being the random variable Y jk , then
by assuming conditional independence of the sensors given
Xk, we can write

Yk|(Xk = xk) ∼ gθ(yk|xk) =

M∏
j=1

gjθ(y
j
k|xk). (19)

This conditional independence assumption is a common as-
sumption in multisensor filtering and sensor fusion (e.g., [3],
[7], [19])). Examining (19), we notice that we have factored
our particle filter likelihood (8) into per-sensor PDFs.

Considering a sensor likelihood gjθ(y
j
k|xk), we can param-

eterize its non-fault, faulty (for one or more known types of
fault, if applicable), spoofed, etc. behavior in θ. And, if we
have models for one of these behaviors, we can accordingly
form hypotheses: H0 : θ = θ0, H1 : θ = θ1, etc. This is how
we bring together the particle-filtering and Monte Carlo fault-
detection theories. Each individual particle, which has a value
of the random variable Y jk |Xk and a probability (the particle’s
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weighting in the collection of particles), serves as a sample (a
di in Section IV’s terminology). Repurposing these particles
as datapoints for the expected behavior of the data under the
stated hypotheses lets us reject, in real time, measurements
that do not match our prior models for data that would come
from a correctly-functioning sensor.

Based on the above discussion, the general framework for
the robustified particle filter is given below.

1) Perform a prediction step as normal, using (7).
2) For each sensor j at time k, calculate either the likelihood

ratio or Fisher test statistic, depending on whether a
Neyman-Pearson or Fisher test is used.

3) For each sensor, determine whether to reject it as
faulty using the relevant hypothesis test for the actually-
observed measurement and selected α.

4) Perform an update step with the non-rejected measure-
ments using (8) (and, if desired, a resampling step).

5) Advance in time, k ← k + 1, return to step 1, repeat.

The type of test (Fisherian or Neyman-Pearsonian) to select
for each situation and each sensor is dependent on the problem
circumstances. We believe that it generally makes sense to favor
a Neyman-Pearson-type test when one has trustworthy models
for all reasonably-expected types of faults, and a Fisherian test
when one does not. Our example case study presented in the
next section shows some results for different types of tests and
different fault models of varying accuracy.

VI. EXAMPLE APPLICATION

As mentioned in the introduction, our work presented above
was motivated by earlier work involving the use of a particle
filter and various data sources (some obviously faulty to a
human when examined post facto) to estimate a freeway’s
traffic state [28]. In this Section, we present a simulation case
study based on that work, to demonstrate in particular the
hypothesis-testing particle filters proposed in this paper.

A. Implementation details

Our system of study is a 19-mile portion of I-210 West in
southern California. As our system model fθ(·), we make use
of the macroscopic Cell Transmission Model (CTM) [4], which
approximates traffic as compressible fluid flows. This type of
model can capture important nonlinear emergent features in
traffic flows like traffic jams and congestion waves.

In the CTM, the freeway is discretized into a sequence of
finite-volume cells, also called links. The state vector xk is the
vector of link densities ρ`,k, where ` indexes the links (with
`+ 1 immediately downstream of `) and k is the time index.
Link `’s state update equation is

ρ`,k+1 = ρ`,k +
1

L`
(q`−1,k − q`,k + r`,k − s`,k) (20)

where L` is the length of link `, q`,k denotes the vehicle flow
going from link ` to link ` + 1 at time k, r`,k is the flow
entering link ` from an onramp (if any) at time k, and s`,k is
the flow leaving link ` to an offramp (if any) at time k.

When there is no onramp or offramp between links ` and
`+ 1, the flow from link ` to link `+ 1, q`,k in (20), is given
by

q`,k = min(vf,` · ρ`,k · L`, Qmax,`,
w`+1 · L`+1 · (ρJ,`+1 − ρ`+1,k)),

(21)

where vf,` is the freeflow speed of link `; Qmax,` is the capacity,
or maximum possible flow over a time period, of link `; w`+1

is the speed at which congestion waves propagate upstream in
link `+ 1; and ρJ,`+1 is the jam density, or maximum possible
density, of link `+1. The third argument in the min(·) function
in (21) lets the downstream link ` + 1 refuse to accept flow
from link ` if `+ 1 is too full.

When there is an onramp and/or an offramp between links `
and `+1, we determine the flow q`,k according to the junction
model of [20]. The ramp flows themselves, s`,k and r`,k in
(20), are random variables. See [28] for full implementation
details of these last two points.

A common type of first-party sensor for freeway traffic
are inductive loop detectors buried in the pavement. These
detectors can noisily measure density. A third-party source of
data are vehicle-carried GNSS devices that report the speed
of individual vehicles. In the CTM, the speed of traffic in link
` at time k is v`,k = Ll · ρ`,k/q`,k. A high vehicle density
leads to congestion, and hence low speeds. We can use speed
measurements to estimate density using this relationship in a
Rao-Blackwellized particle filter [5].

To test our fault detection method, we simulated a realization
of our freeway model, with randomness introduced by the
random onramp, offramp, and upstream boundary flows. In
addition to noisy density measurements from 41 loop detectors,
we simulated GNSS speed measurements with a simulated
penetration rate of 2% (i.e., each vehicle had a 2% chance
of noisily reporting its speed). To generate the faulty third-
party measurements, we gave each speed measurement a 30%
probability of being faulty. We used two fault models: a faulty
measurement had a 1/3 probability of reporting zero (i.e., a
stopped car misreporting its location), and a 2/3 probability of
drawing from a Gaussian distribution with mean 30 m/s and
standard deviation 10 m/s. The non-fault model for velocity
measurements, gjθ0(·), was Gaussian with a mean of the true
link velocity and standard deviation of 20% of the mean (similar
to [27]). Fig. 1 shows the true state and velocity measurements
used.

B. Results

We tested both the Fisherian and two instances of the
Neyman-Pearsonian (each using a different fault hypothesis
H1) against this problem. The results are presented in Tables
I through III.

In the tables, we report both the performance of the
statistical tests in rejecting faulty measurements, as well as the
resulting estimation error obtained when using the non-rejected
measurements. “Positives” refer to measurements for which we
rejected H0, i.e., sensors that our fault decision statistical test
concluded were faulty. “True” and “False” refer to correct and
incorrect decisions, respectively, of whether a measurement
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(c) Non-faulty speed subset (m/s)

Fig. 1. Simulated true density state trajectory (a), speed measurements (b), and non-faulty subset of speed measurements (c) used in simulation. Traffic moves
to the right, and the time period considered is midnight to noon (as marked on the vertical axis). In (a), the links instrumented with loop detectors that noisily
measure density are marked with red ticks. At peak morning demand, bottlenecks near links 30, 70, and 110 lead to traffic jams that propagate upstream (i.e.,
they extend to the left as time advances), leading to increased density and lower speed. The jams later dissipate as demand falls.

is faulty. “Labeling error” reports the overall percentage of
incorrect decisions (False Negatives and False Positives). The
estimation error is reported in terms of the mean absolute
percentage error (MAPE), the average of |ρ̂`,k − ρ`,k|/ρ`,k for
all ` and k, with ρ̂`,k the `th entry of ρ̂k =

∑P
p=1 x

p
k ·pθ(x

p
k|yk),

i.e., the mean of the posterior particle filter PDF.

The two Neyman-Pearson estimation experiments are shown
in Tables I and II. As indicated in the table names, Table I
shows results for a simulation where the likelihood ratio test
had an incorrect faulty measurement likelihood, and Table
II one with the correct faulty measurement likelihood. The
faulty measurement likelihood of Table I was a Gaussian that
only placed mass near zero, i.e., it was crafted to select the
fake “stopped car” vehicles. It indeed rejects the “stopped car”
vehicles, but, as reflected in the relatively high labeling error
rates, it does not reject the purely random measurements. On the
other hand, the Neyman-Pearson fault detector with the correct
H1 model, unsurprisingly, performs better, rejecting many of
the stopped-car and the purely random measurements. The
Fisherian results (Table III) show that the estimation accuracy is
quite sensitive to the selected α. There are much larger changes
in labeling error and MAPE across the scale of α values selected
than for either of the Neyman-Pearson results. This is not too
surprising, as not having any alternative hypothesis H1 to
compare against, makes the p-value much more sensitive to
small variations in the likelihood under H0 than the likelihood
ratio would be.

Of particular interest are the columns for α = 0.001 and
0.01 in the Fisher results table (Table III). For these values
of α, we obtain results that are between the performance of
the correct- and incorrect-fault-model Neyman-Pearson filters.
This is an encouraging result, as it confirms our intuition that
for a properly tuned α, not having a fault model can beat the
performance of using an incorrect one.

As mentioned in the caption for the tables, a particle
filter estimator that did not see any faulty data (i.e., the true
measurement distribution was gjθ0(·)) obtained a MAPE of
3.43%. Unsurprisingly, none of the fault-detecting estimators
consistently managed to obtain this level of accuracy, although
the Neyman-Pearson fault detector with the correct fault model
did come within a standard deviation or two.

TABLE I
NEYMAN-PEARSON FAULT DETECTION/ESTIMATION (INCORRECT H1)

α = 0.001 α = 0.01 α = 0.1

True Positives 700 ±0 700 ±0 700.40±0.55
False Positives 58.40±9.50 62.80±5.72 76.60±7.02
True Negatives 4535.60±9.50 4531 ±5.72 1305.60±7.02
False Negatives 1306 ±0 1306 ±0 1305.60±0.55
Labeling Error (%) 20.67±0.14 20.74±0.09 20.94±0.10

Density MAPE (%) 3.80±0.12 3.86±0.05 3.93±0.11

TABLE II
NEYMAN-PEARSON FAULT DETECTION/ESTIMATION (CORRECT H1)

α = 0.001 α = 0.01 α = 0.1

True Positives 1415.80±5.12 1433.80±1.79 1450.80±2.68
False Positives 94.80±8.07 106.20±16.80 118.20±17.61
True Negatives 4499.20±8.07 4487.80±16.80 4475.80±17.61
False Negatives 590.20±5.12 572.20±1.79 555.20±2.68
Labeling Error (%) 10.38±0.18 10.28±0.28 10.20±0.31

Density MAPE (%) 3.51±0.08 3.53±0.18 3.57±0.17

TABLE III
FISHER FAULT DETECTION/ESTIMATION

α = 0.001 α = 0.01 α = 0.1

True Positives 1214.80±2.49 1294.60±4.62 1457 ±3.32
False Positives 39 ±2.74 76.40±12.10 349.40±29.52
True Negatives 4555 ±2.74 4517.60±12.10 4244.60±29.52
False Negatives 791.20±2.49 711.40±4.62 549 ±3.32
Labeling Error (%) 12.58±0.05 11.94±0.24 13.61±0.49

Density MAPE (%) 3.66±0.10 3.71±0.18 4.22±0.21

“Positives” refer to sensors for which we rejected H0, i.e., sensors that our
fault detection statistical test concluded were faulty. “True” and “False” refer
to correct and incorrect decisions, respectively, of whether a sensor is faulty.
In a simulation with no faulty velocity measurements, a lower-bound density
MAPE of 3.43% was achieved.
All values reported are the mean and standard deviation of five identical
simulations with different random seeds.
MAPE = mean absolute percentage error.

VII. CONCLUSION

This article presented a principled fault-detecting particle
filter for real-time rejection of potentially faulty measurements.
Our methods are based on the classical Fisherian and Neyman-
Pearsonian statistical testing theories, and follows these theories
to arrive at different testing methods for when the engineer
has a reliable model of faults, and when she does not.
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One item of interest is the subtle inversion of what is
considered the “data” in our hypothesis tests. Notice that in
this paper, the “data” that we use to estimate our test statistic
are actually the simulated particles, which come from the
system model, and we perform our hypothesis test to accept
or reject the observations. An interesting implication of this
nuance is how this hypothesis-testing particle filter allows a
highly-trusted model to overpower the data, whereas a standard
particle filter will always accept every datapoint, even if it is
a clear outlier. We believe that the proposed techniques are
closely aligned with the contemporary effort to fuse model-
based and data-driven estimation and control techniques in
many information sciences: to bring priors obtained from the
engineering discipline to the surge of “big data.” These lessons
are likely to be useful in many areas to bring GNSS and other
“big data” to ITS and other built-environment applications.

ACKNOWLEDGEMENTS

This research was supported by the National Science
Foundation under grant CNS-1545116 and Berkeley DeepDrive.
M. A. W. thanks Adityanand Guntuboyina for raising a question
regarding the congruity of [29]’s material with the Neyman-
Pearson framework that helped direct some of the inquiry
reported in the present paper. We also thank our colleague
Alex A. Kurzhanskiy as well as three anonymous reviewers
for their useful feedback.

REFERENCES

[1] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[2] J. Bhatti and T. E. Humphreys, “Hostile Control of Ships via False GPS
Signals: Demonstration and Detection,” Navigation, vol. 64, no. 1, pp.
51–66, Mar. 2017.

[3] J. F. Chamberland and V. V. Veeravalli, “Decentralized detection in sensor
networks,” IEEE Trans. Signal Process., vol. 51, no. 2, pp. 407–416,
Feb. 2003.

[4] C. F. Daganzo, “The cell transmission model: A dynamic representation of
highway traffic consistent with the hydrodynamic theory,” Transportation
Research Part B: Methodological, vol. 28, no. 4, pp. 269–287, Aug.
1994.

[5] A. Doucet, N. de Freitas, K. Murphy, and S. Russell, “Rao-blackwellised
Particle Filtering for Dynamic Bayesian Networks,” in Proceedings of
the 16th Conference on Uncertainty in Artificial Intelligence. Stanford,
California: Morgan Kaufmann Publishers Inc., 2000, pp. 176–183.

[6] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and
smoothing: Fifteen years later,” in The Oxford Handbook of Nonlinear
Filtering. Oxford University Press, 2011, pp. 656–704.

[7] H. Durrant-White and T. C. Henderson, “Multisensor Data Fusion,”
in Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Springer, 2016, pp. 867–896.

[8] A. Ferrara, S. Sacone, and S. Siri, Freeway Traffic Modelling and Control.
Cham: Springer International Publishing, 2018.

[9] R. A. Fisher, “The Logic of Inductive Inference,” Journal of the Royal
Statistical Society, vol. 98, no. 1, pp. 39–82, 1935.

[10] ——, Statistical Methods for Research Workers. Oliver & Boyd, 1925.
[11] ——, The Design of Experiments. Oliver & Boyd, 1935.
[12] N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/non-

Gaussian Bayesian state estimation,” IEE Proc. F Radar Signal Process.
UK, vol. 140, no. 2, p. 107, 1993.

[13] S. Jin, E. Cardellach, and F. Xie, GNSS Remote Sensing: Theory, Methods
and Applications. Dordrecht: Springer, 2014.

[14] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” J. Basic Eng, vol. 82, no. 1, pp. 35–45, Mar. 1960.

[15] R. Keener, Theoretical Statistics: Topics for a Core Course, 1st ed. New
York, NY: Springer, 2010.

[16] A. A. Kurzhanskiy and P. Varaiya, “Traffic management: An outlook,”
Economics of Transportation, vol. 4, no. 3, pp. 135–146, Sep. 2015.

[17] E. L. Lehmann, “The Fisher, Neyman-Pearson Theories of Testing
Hypotheses: One Theory or Two?” Journal of the American Statistical
Association, vol. 88, no. 424, pp. 1242–1249, Dec. 1993.

[18] E. Lovisari, C. Canudas de Wit, and A. Y. Kibangou, “Density/Flow re-
construction via heterogeneous sources and Optimal Sensor Placement in
road networks,” Transportation Research Part C: Emerging Technologies,
vol. 69, pp. 451–476, Aug. 2016.

[19] L. Mihaylova, R. Boel, and A. Hegyi, “Freeway traffic estimation within
particle filtering framework,” Automatica, vol. 43, no. 2, pp. 290–300,
Feb. 2007.

[20] A. Muralidharan, G. Dervisoglu, and R. Horowitz, “Freeway traffic flow
simulation using the Link Node Cell transmission model,” in Proc. of
the 2009 American Control Conference, Jun. 2009, pp. 2916–2921.

[21] J. Neyman and E. S. Pearson, “On the use and interpretation of certain
test criteria for purposes of statistical inference: Part I,” Biometrika, vol.
20A, pp. 175–240, 1928.

[22] ——, “On the problem of the most efficient test of statistical hypotheses,”
Philosophical Transactions of the Royal Society of London A, vol. 231,
pp. 289–337, 1933.

[23] ——, “The testing of statistical hypotheses in relation to probabilites a
priori,” Proceedings of the Cambridge Philosophical Society, vol. 29, pp.
492–510, 1933.

[24] J. Reilly, S. Martin, M. Payer, and A. M. Bayen, “Creating complex
congestion patterns via multi-objective optimal freeway traffic control
with application to cyber-security,” Transportation Research Part B:
Methodological, vol. 91, pp. 366–382, Sep. 2016.

[25] J. W. Schneider, “Null hypothesis significance tests. A mix-up of two
different theories: The basis for widespread confusion and numerous
misinterpretations,” Scientometrics, vol. 102, no. 1, pp. 411–432, Jan.
2015.

[26] T. Seo, A. M. Bayen, T. Kusakabe, and Y. Asakura, “Traffic state
estimation on highway: A comprehensive survey,” Annual Reviews in
Control, vol. 43, pp. 128–151, 2017.

[27] D. B. Work, S. Blandin, O. P. Tossavainen, B. Piccoli, and A. M. Bayen,
“A Traffic Model for Velocity Data Assimilation,” Applied Mathematics
Research eXpress, vol. 2010, no. 1, pp. 1–35, Apr. 2010.

[28] M. Wright and R. Horowitz, “Fusing Loop and GPS Probe Measurements
to Estimate Freeway Density,” IEEE Trans. Intell. Transp. Syst., vol. 17,
no. 12, pp. 3577–3590, Dec. 2016.

[29] M. A. Wright and R. Horowitz, “Particle-filter-enabled real-time sensor
fault detection without a model of faults,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), Dec. 2017, pp. 5757–5763.

Matthew A. Wright received the M.S. degree in
Mechanical Engineering from the University of Cali-
fornia, Berkeley in 2015, and is currently a candidate
for the Ph.D. degree in Mechanical Engineering from
the same institution.

His research interests include modeling, state
estimation, and control for stochastic, complex, and
networked systems such as vehicle traffic networks.

Roberto Horowitz received the Ph.D. degree in
Mechanical Engineering in 1983 from the University
of California, Berkeley. In 1982, he joined the
Department of Mechanical Engineering, University
of California, Berkeley, where he is currently the
Department Chair and the James Fife Endowed
Chair.

His research interests include the areas of adaptive,
learning, nonlinear and optimal control, with appli-
cations to microelectromechanical systems (MEMS),
computer disk file systems, robotics, mechatronics,

and intelligent vehicle and highway systems.
Dr. Horowitz is the recipient of the 2018 ASME Rufus Oldenburger Medal.


	Introduction
	Background of the Filtering Problem
	State Estimation of Dynamic Systems
	Particle Filter

	Statistical Testing: An Introduction
	Statistical Testing for Measurement Rejection
	Notation
	Neyman-Pearsonian ``hypothesis testing''
	Monte-Carlo Neyman-Pearsonian Likelihood Ratio Tests
	Fisherian ``significance testing''
	Monte-Carlo Fisherian Significance Tests

	A Probabilistic Outlier-Rejecting Particle Filter
	Example Application
	Implementation details
	Results

	Conclusion
	References
	Biographies
	Matthew A. Wright
	Roberto Horowitz




