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Abstract. We show that Lusztig’s canonical basis for the degree two part of the Grassman-
nian coordinate ring is given by SLk web diagrams. Equivalently, we show that every SL2

web immanant of a plabic graph for Gr(k, n) is an SLk web invariant.
Keywords. Grassmannians, webs, canonical basis, Catalan
Mathematics Subject Classifications. 05E10, 14M15, 20C30

1. Introduction

Let Ln(λ) denote the irreducible polynomial representation of GLn indexed by the weakly de-
creasing sequence λ ∈ Nn. Its character is the Schur polynomial sλ(x1, . . . , xn) and its dimen-
sion is the cardinality of the set SSYT(λ, [n]) of semistandard Young tableaux whose shape
is λ and whose entries are drawn from [n] := {1, . . . , n}. One is interested in constructing
bases of Ln(λ) with good symmetry and positivity properties and with basis elements indexed
by SSYT(λ, [n]) in a natural way, see [Kam22] for a recent survey. Lusztig and Kashiwara
introduced the dual canonical basis (henceforth the “canonical” basis) as one solution to this
problem. An ongoing aim of combinatorial representation theory is to make this basis more
explicit.

Let ωk denote the kth fundamental weight for GLn. In the special case that λ = dωk for a
positive integer d, one can study the representation Ln(λ) and its canonical basis via the tech-
nology of SLk web diagrams. These are planar diagrams drawn in an n-gon and subject to a
“k-valency condition.” The number of boundary edges of such a diagram is always a multiple
of k. Such a web W determines a web invariant

[W ] ∈ Ln(dωk)

when W has dk many boundary edges. Web invariants are known to span the representa-
tion Ln(dωk). They are not linearly independent, but all linear relations between them are a
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Figure 1.1: A rectangular semistandard Young tableau with 9 rows and 2 columns and its cor-
responding SL9 web diagram on 18 boundary vertices. The main construction of this paper
formulates such a recipe for rectangular tableaux with k rows and 2 columns for any k.

consequence of known diagrammatical relations, the skein relations [CKM14]. A second proof
of this fact using Postnikov’s plabic graphs appeared in [FLL19].

The special case of the representations Ln(dωk) is of some interest because of the following
connection with the Grassmannian Gr(k, n) of k-subspaces in Cn. Let C[Gr(k, n)] denote the
homogeneous coordinate ring of Gr(k, n) in the Plücker embedding and let C[Gr(k, n)](d) de-
note the subspace spanned by degree d monomials in Plücker coordinates. The action of GLn

on Cn induces an action on the Grassmannian coordinate ring and one has

C[Gr(k, n)](d) ∼= Ln(dωk)

as GLn-representations. Thus the coordinate ring inherits a canonical basis degree by degree.
In this realization, the canonical basis when d = 1 is identified with the set of Plücker

coordinates on Gr(k, n). Our main result addresses the case d = 2:

Theorem A. Each element of the dual canonical basis for Ln(2ωk) is an SLk web invariant, for
any k and n.

We prove our theorem constructively: we set up a multivalued tableau-to-web map

SSYT(2ωk, [n]) → SLk web diagrams on n vertices with 2k boundary edges

which becomes well-defined once we pass from web diagrams to web invariants. See Figure 1.1
for an instance of this map in the case k = 9 which serves as our running example.

Our tableau-to-web map passes through several intermediate Catalan-style objects, see Fig-
ure 1.2 for a schematic of these intermediate steps and Figure 1.3 for an illustration of these
intermediate objects. To produce a web diagram from a tableau using our recipe, one first con-
structs a dissection of a certain polygon and then extends this dissection to a triangulation. The
latter step involves choices but we give two different proofs that the resulting web invariant is
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dissections triangulations

Figure 1.2: The tableau-to-web map sends a standard tableau T to a weighted dissection dT
of a certain polygon. One makes a choice of triangulation tT extending dT which determines
a web diagram W (tT ). The vertical maps are reversible but the dashed horizontal maps are
multivalued. Nonetheless the invariant [W (tT )] is well-defined.

independent of such choice: a direct proof which interprets the flip move on triangulations as a
skein relation between web diagrams (see Proposition 2.14) and a conceptual proof which shows
that our web diagrams satisfy a duality property which specifies their web invariants uniquely
(see Theorem 4.5).

The cluster algebra structure on C[Gr(k, n)] suggests that the notions of web invariant and
canonical basis element should be intimately related: every cluster monomial in C[Gr(k, n)] is
expected to be both a web invariant [FP16] and a canonical basis element (see [GLS08, Qin20]
for closely related results). One knows, however, that there are canonical basis elements which
are not web invariants and also that there are canonical basis elements which are not cluster
monomials (the latter happens even in degree d = 2).

Expressing a canonical basis element b as a web invariant is a useful thing to do. Due to the
Plücker relations, there are manifold ways of expressing b as a polynomial in Plücker coordinates.
One can remove this ambiguity by expressing b as aZ-linear combination of standard monomials
in Plücker coordinates, but this expression does not respect the cyclic symmetry of the n-gon
and can be a bit tedious to work out. By contrast, one can “see” many properties of b (e.g., its
degree of cyclic symmetry, the descents of its corresponding tableau, and so on) directly from a
web diagram whose invariant is b.

Previous work. There has been much previous work comparing canonical bases and web in-
variants [FP16, FK97, KK99, Kup96, Lam20]. For fixed d, k the complexity of the underlying
combinatorics stabilizes once n ⩾ dk. We can analyze the problem by fixing either k or d,
letting the other parameter vary and assuming that n is in the stable range.

When k = 2, every canonical basis element is an SL2 web invariant. The underlying com-
binatorics is that of noncrossing matchings and the Temperley–Lieb algebra. Once k > 2, web
invariants are linearly dependent and it becomes an interesting problem to find a basis of web
invariants with good properties. This problem has a nice solution when k = 3 [Kup96] but
remains elusive when k > 3. Our main theorem solves this problem for all k in the special
case d = 2.

The degree d part of the Grassmannian coordinate ring when d is either 2 or 3 has been
actively studied, mostly through the lens of deciding which canonical basis elements are clus-
ter variables [BBGE20, BBGL20, BBL21, LY]. Our approach complements these papers by
studying the whole basis (when d = 2), not only the cluster variables.
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Figure 1.3: Intermediate objects appearing in the tableau-to-web map. A tableaux T affords a
noncrossing matching M by a standard Catalan bijection. The boundary vertices of such an M
are broken into color sets incdicated in the figure. Gluing vertices of the same color and keeping
track of the number of edges between each color set, the matching M begets a weighted dissec-
tion d. The triangulation t extends this dissection d by adding two weight zero diagonals (drawn
dashed). By a simple recipe, t begets a web diagram, in this case the web from Figure 1.1.

Cyclic symmetry. The canonical basis of Ln(dωk) was used to establish the cyclic sieving
phenomenon for the action of promotion on SSYT(dωk, [n]) [Rho10]. The crucial property is
that the canonical basis is a weight basis whose elements are permuted by the automorphism
of C[Gr(k, n)] induced by rotation of the n-gon. This action on basis elements implements
promotion on tableaux. It remains an interesting open problem to find a basis of web invariants
with the same properties. Again, this problem is solved when k = 2, 3 and now holds when d = 2
using our Theorem A. We hope our construction might be a useful input towards solving the
problem when d = 3, and perhaps for all d.

Web immanants. The well-studied relationship between Gr(k, n) and plabic graphs [Pos06]
yields a different perspective on the canonical basis for Ln(2ωk). In this viewpoint, the canoni-
cal basis for Ln(2ωk) coincides with the set of SL2 web immanants [Lam19, Lam15]. The web
immanant is constructed somewhat indirectly using the double dimer model on a plabic net-
work N . Roughly speaking, web immanants are indexed by noncrossing matchings m, and the
web immanant Fm is defined as the generating function for double dimer covers of N which
match boundary vertices according to m. It is far from obvious that the “SL2-style” combi-
natorics of noncrossing matchings should have any relationship with the combinatorics of SLk

web diagrams. Nonetheless, since SL2 web immanants and degree-two canonical basis elements
coincide, Theorem A can be reformulated as follows:

Theorem B. Every SL2 web immanant for Gr(k,n) is an SLk web invariant, for any k, n.

This is how we will approach Theorem A. Theorem B was anticipated in [FLL19, Observa-
tion 8.2], where we observed that it held when k = 2, 3, 4, 5.

One also has a good notion of SL3 web immanants and these form a rotation-invariant basis
for the degree three part of the Grassmannian coordinate ring. It would be very interesting to
find an analogue of Theorem B in the d = 3 case, see loc. cit. for a discussion when k = 2, 3.
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Duality of symmetric group representations. Canonical basis elements are indexed by semi-
standard tableaux. We prove our main result by first considering the weight subspace

Ldk(dωk)
std ⊂ Ln(dωk)

spanned by the canonical basis elements whose tableau is standard. The symmetric group Sn

forn = dk acts onLn(dωk). The subspaceLdk(dωk)
std appears as anSn-irrep. Invoking Schur’s

lemma, one obtains a uniquely defined (up to homothety) perfect pairing

⟨, ⟩ : Ldk(dωk)
std ⊗ Ldk(kωd)

std → ε

where ε is the sign representation.
Thus, a choice of basis for Ldk(kωd)

std induces a dual basis for Ldk(dωk)
std with respect

to ⟨, ⟩. It seems likely that this notion of duality respects canonical basis vectors up to a pre-
dictable sign. We verified this expectation in [FLL19] when d = 2 using SL2 web immanants.
Thus, to prove Theorem A on the “standard part” of the representation L2k(2ωk), we merely
need to identify a set of web diagrams whose corresponding invariants are dual to the canonical
“noncrossing matching” basis for L2k(kω2)

std. This result is the heart of our paper, formulated
as Theorem 4.5. For instance, the SL9 web in Figure 1.1 is dual to the SL2 web given by the
noncrossing matching M in Figure 1.3.

We extend the construction from L2k(2ωk)
std to the whole representation Ln(2ωk) using

routine “semistandardization” constructions.

Organization. The new results and constructions are in the first three sections. Section 2
formulates the map from standard tableaux to web diagrams in purely combinatorial terms and
proves the invariance under change of triangulation using skein relations. Section 3 makes a
connection between the tableau-to-web map and plabic graphs. Each SLk web diagram is in
particular a plabic graph, hence encodes a positroid, and we identify the positroids which arise
via the resulting tableau-to-positroid map. Section 4 states and proves our core combinatorial
result, the web-matching duality Theorem 4.5. Sections 5 and 6 give quick definitions of web
invariants and web immanants respectively. Section 7 extends all constructions from standard to
semistandard tableaux. We then deduce Theorem B, hence also Theorem A, from Theorem 4.5
by a quick argument.

We use standard combinatorial notation
(
[n]
k

)
for the collection of k-subsets of [n]. We assume

familiarity with the notions of standard and semistandard Young tableaux.

2. Tableau-to-web map: standard case

We formulate the combinatorics of our “degree two” tableau-to-web map and provide a running
example. We follow the conventions in [FLL19] and refer to that paper for a more leisurely tour
through the definitions.

Definition 2.1. [Web diagram] An SLk web diagram W is a planar bipartite graph
W = (V (W ), E(W )) embedded in a disk. The vertex set V (W ) has n boundary vertices, each
of which is on the boundary of the disk and is colored black in the bipartition. The boundary
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vertices are numbered 1, . . . , n in cyclic order. In addition, V (W ) has interior vertices drawn in
the interior of the disk and colored either white or black. Finally, W comes with a multiplicity
function mult : E(W ) → [0, k] with the property that the multiplicity sum around every interior
vertex v equals k: ∑

e∼v

mult(e) = k.

We consider such W up to isotopy of the disk fixing the boundary vertices.

Let us emphasize some of our web conventions which are not always taken in the literature.
First, we do not require that every boundary vertex has degree at most one, or that every edge
incident to a boundary vertex has multiplicity one. Second, we do not require that internal
vertices are trivalent. And third, we get rid of the formalism of tags which is used in [CKM14]
to fix certain signs, relying instead on results from [FLL19] and an extra result on signs (see
Lemma 5.3).

The content of an SLk web on n boundary vertices is the degree sequence (d1, . . . , dn) of its
boundary vertices (with di the degree of the ith boundary vertex). By elementary arguments,
one knows always that

∑
i∈[n] di = dk for some d ∈ N called the degree of W .

We call a web type 1 if all of its boundary edges have multiplicity one (i.e., its multiweight
is the all-ones vector in Zn). We call a web type 2 if all of its boundary vertices have degree at
most one. Type 1 webs naturally give rise to functions on Grassmannians, while Type 2 webs
are natural from the viewpoint of matchings and immanants.

Note that type 1 webs may have boundary vertices of high degree (although in this paper the
degree will never exceed two), and type 2 webs may have boundary edges of high multiplicity
(although in this paper the multiplicity will not exceed two). Only these two subclasses of webs
will appear in this paper.

For a type 2 web W , the multiweight is the sequence (ν1, . . . , νn) recording the value of
the W ’s multiplicity function on the ith boundary edge of W (i.e., the edge which is connected
to boundary vertex i if such exists). If boundary vertex i has degree i we take νi = 0.
Remark 2.2. Both the content and the multiweight sequences play a role in what follows, par-
ticular when we begin to consider semistandard rather than just standard tableaux. As we spell
out below, web duality pairs degree two SLk webs of type 1 with SL2 webs. Under this duality,
the content of the SLk web is the multiweight of the corresponding SL2 web in a certain sense.
More precisely, in the language of our Main Theorem B, one knows that each such SLk web is
a web immanant enumerating 2-like subgraphs, and the content of the SLk web corresponds to
the multiweight of these 2-like subgraphs.

We call a web standard if it has content (1, 1, . . . , 1) and all its boundary edges have multi-
plicity one. Such a web is both type 1 and type 2. Any type 1 web has an associated standard
web obtained by replacing each boundary vertex of degree m by m many boundary vertices of
degree one (deleting boundary vertices of degree zero). Most arguments involving web diagrams
can first be carried out for standard webs and then transferred to arbitrary webs by reversing this
process.

Example 2.3. The right diagram in Figure 1.1 is a degree two standard SL9 web. The black
numbers on the outside of the diagram label are the boundary vertex labels and those on the
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inside indicate edge multiplicities. Edge multiplicities of boundary edges equal one and are
omitted.

By a known recipe which we defer to Definition 5.1, any type 1 SLk web W of degree d
with n many boundary vertices determines an element

[W ] ∈ Ln(dωk) ∼= C[Gr(k, n)](d). (2.1)

To understand the constructions in the current section, the reader need only know that there
are certain diagrammatic moves on web diagrams which induce linear relations between web
invariants [CKM14, FLL19]. In our set of conventions, these moves are contraction of bivalent
vertices, bigon removal, dipole removal, and the square switch move, see [FLL19, Section 6] for
a discussion.

Example 2.4. The simplest example of an SLk web is a claw graph with one interior white vertex
joined to k distinct boundary vertices each by an edge of multiplicity one. Letting I denote the
subset of boundary vertices which are used in this claw graph, the corresponding web invariant
is the Plücker coordinate ∆I ∈ C[Gr(k, n)].

We associate a web diagram to a tableau via three steps, indicated schematically in Figure 1.2.
We now describe each of these these steps while reviewing the intermediate combinatorial gad-
gets which appear along the way.

2.1. From SYT’s to dissections

We construct a map T 7→ dT from the set SYT(2ωk) of standard Young tableaux with k rows
and 2 columns to the set of weighted dissections of polygons of weight k, i.e. we formulate the
first downwards arrow in Figure 1.2.

We assume familiarity with the concept of noncrossing matching of a 2k-gon. Such match-
ings are equinumerous with SYT(2ωk) and these two sets are related by a well-known Catalan
bijection described as follows. If ij is an an arc in a noncrossing matching M and if i < j then
we say i is the left endpoint of ij and j is the right endpoint. Given T ∈ SYT(2ωk), there exists
a unique noncrossing matching M(T ) of the 2k-gon with the property that the left endpoints
of M(T ) (resp. right endpoints) are exactly the entries of the first (resp. second) column of T .

Example 2.5. The noncrossing matching M of the 18-gon appearing in Figure 1.3 is related to
the tableau T ∈ SYT(2ω9) from Figure 1.1 by the Catalan bijection.

Definition 2.6 (Short arcs). A short arc in a noncrossing matching M is an arc joining adjacent
boundary vertices of the 2k-gon. We let s(M) denote the number of short arcs in M .

Observe that every noncrossing matching has at least two short arcs (provided k ⩾ 2).
For a noncrossing matching M we can always define uniquely numbers i1 < · · · < is with

the property that ij and ij + 1 mod 2k are joined by an arc in M and these are a complete list
of the short arcs in M . (These typically coincide with the set of left endpoints of the short arcs
of M except in the special case that 1 and 2k are joined by a short arc in M .)
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Definition 2.7 (Color sets of M ). With i1, . . . , is as just defined, the color sets of a noncrossing
matching M are the cyclic intervals Cj := (ij−1, ij].

The color sets solve the following coloring problem: color, with as few colors as possible,
the boundary vertices of the 2k-gon so that no arc joins two vertices of the same color and all of
the color sets are cyclic intervals.

Observe that we have indexed things in such a way that 1 ∈ C1 always, since is < 1 ⩽ i1 in
cyclic order.

Example 2.8. The matching M from Figure 1.3 has six short arcs with left endpoints 1, 3,
6, 8, 10, and 14. On the other hand, the numbers i1, . . . , i6 as in Definition 2.7 are 3, 6, 8,
10, 14, and 18. The color sets C1, . . . , C6 are the intervals [1, 3], [4, 6], [7, 8], [9, 10], [11, 14],
and [15, 18], indicated by the colors in the figure.

Remark 2.9. Directly from the tableau, one can see that entries i and i + 1 will be in the same
color set of M(T ) whenever i appears in a strictly higher row of T than i + 1 does. When this
happens, i is often called a descent of T . One also needs to decide under what circumstances the
pair {1, 2k} form a descent. Let T \ {1, 2k} denote the tableau obtained by deleting entries 1
and 2k and sliding the entries in the first column up one box. Then {1, 2k} form a descent if
and only if T \ {1, 2k} is not a standard tableau on the ground set [2, 2k − 1], i.e. if and only
if T \ {1, 2k} has a decreasing row.

Definition 2.10 (Weighted dissections). A dissection of an s-gon is a choice of diagonals in
the s-gon which are mutually noncrossing. (For our purposes, the sides of the s-gon are also
considered diagonals.) A weighted dissection d is a dissection together with an N-weighting of
its diagonals. The weight of d is the sum of the weights of its various diagonals. The content di
of the vertex i in d is the sum of the weights of its incident diagonals.

One has always ∑
i∈[s]

di = 2wt(d) (2.2)

since each diagonal is counted twice in the above sum.
A triangulation is a dissection which is maximal by inclusion.

Construction. Given a noncrossing matching M = M(T ) with s many short arcs and with
color sets C1, . . . , Cs, we obtain a weighted dissection dT of the s-gon by merging the boundary
vertices in each color set (merging color set Ci into vertex i of the s-gon), replacing multiple
edges by a single edge of the same weight.

This construction is illustrated in the passage from M to d in Figure 1.3.
Observe that the total weight of dT is the number of arcs in M , which is k. Similarly, the

content di of dT equals the cardinality of the color set Ci of M .
Remark 2.11. The mappingM(T ) 7→ dT is not reversible. For example, rotating the matchingM
in Figure 1.3 counterclockwise by one or two units would not affect the corresponding dT .

More generally, the size of the inverse image of a given weighted dissection dT is given by
the content d1 of its first vertex. Indeed, given dT , we can infer that the color set C1 of M(T )
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must be one of the cyclic intervals [2k−d1+1, 1], . . . , [1, d1]. Once such a C1 is chosen, we can
reconstruct the color sets C2, . . . , Cs, and moreover the matching M(T ), from the data of dT .

We can say for brevity that the mapping is reversible “up to rotations.”

2.2. From dissections to triangulations

We now discuss the passage from weighted dissections of weight k to weighted triangulations
of weight k, i.e. the bottom dashed arrow in Figure 1.2.

Given a weighted dissection d of the s-gon, we say that a weighted triangulation t extends d
if the underlying triangulation for t extends the underlying dissection for d and if moreover, the
weight function for t agrees with that for d on the diagonals they share and assigns zero weight
to the diagonals not present in d.

For a tableau T ∈ SYT(2ωk), we will use the notation tT to indicate any choice of weighted
triangulation which extends the weighted dissection dT defined in the previous section. Observe
that if t and t′ are two such extensions, then their underlying triangulations are related by a
sequence of flip moves at diagonals not present in d.

Example 2.12. Continuing our running example, there are four choices of triangulations t ex-
tending the dissection d from Figure 1.3 because we can flip either of the dashed diagonals.

2.3. From triangulations to web diagrams

We now construct a map t 7→ W (t) from weight k weighted triangulations of an s-gon to stan-
dard SLk webs of degree 2. That is, we formulate the upwards arrow in Figure 1.2. To be more
precise, because of the rotational ambiguity discussed in Remark 2.11, the input to our map is a
pair (t, C1) where C1 ∈

(
[2k]
d1

)
is a set whose cardinality matches the content d1 of the first vertex

of t and which satisfies 1 ∈ C1.
Remark 2.13. In our intended application, the weighted triangulation t is an extension of a
weighted dissection dT corresponding to a tableau T , and the set C1 is the corresponding color
set of the matching M(T ).

Construction. Let (d1, . . . , ds) be the content of t andC1 be as just described. For i = 2, . . . , s,
define inductively a cyclic interval Ci ⊂ [2k] which contains the next di many vertices imme-
diately following the interval Ci−1. Thus C1

∐
· · ·

∐
Cs is a decomposition of [2k] into cyclic

intervals, using (2.2).
We first describe W (t) as a graph and then address its edge multiplicities. The graph W (t)

has 2k many boundary vertices, has s many interior white vertices w1, . . . , ws and has interior
trivalent black vertices b(t) indexed by the triangles t in t. If t has has boundary vertices a, b, c
in t, then the trivalent vertex b(t) is joined to the white vertices wa, wb, wc by edges. Finally, each
interior white vertex wi is incident to the di many boundary vertices in the set Ci by a single edge
of multiplicity one. This completes the description of W (t) as a graph.

The multiplicities of the edges b(t)wa, b(t)wb, and b(t)wc around a trivalent vertex are spec-
ified as follows. Note that t \ int(t) is a union of three weighted triangulations, one for each
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side of t. We let A denote the triangulation which contains the side wbwc, i.e. the triangulation
which is “opposite” the edge b(t)wa. Then we set

multW (t)(b(t)wa) =
∑

e∈ polygon A of t

wtT (e),

with the sum over all edges e inside the polygon A. The multiplicities of the edges b(t)wb

and b(t)wc are defined analogously using the triangles B,C opposite the sides b(t)wb and b(t)wc

respectively. This completes the definition of W (t).
Let us check that this above construction indeed produces an SLk web of degree two. Since

each diagonal e ∈ t appears in exactly one of the triangulations A,B,C, the multiplicity sum
around each b(t) equals k as required. We must also argue that the multiplicity sum around
every white vertex equals k. Indeed, summing the multiplicities of the edges from wi to interior
black vertices counts the weight of all of the diagonals of t except those which are incident to
boundary vertex i, i.e. this sum equals k− di. But we have added exactly di additional edges of
multiplicity one from wi to boundary vertices so that the total multiplicity sum equals k indeed.

Summary. The tableau-to-web map is the map

T 7→ W (tT ) (2.3)

where tT is any choice of triangulation extending the dissection dT . Recall that the construction
of the web W (t) from a weighted triangulation t requires a choice of set C1. As alluded to above,
in (2.3) we are implicitly choosing this C1 to be the color set C1 of the matching M(T ).

Our next lemma says that the web invariant [W (t)] is independent of the choice of triangu-
lation tT extending the dissection dT .

Proposition 2.14. Let d be a weighted dissection of weight k and let t, t′ be two extensions of d
to weighted triangulations. Then the corresponding SLk web invariants coincide:

[W (t)] = [W (t′)] ∈ L2k(2ωk) ∼= C[Gr(k, 2k)](2).

Proof. It suffices to show the claim when t and t′ differ by a flip in a quadrilateral since triangu-
lations which extend d are connected by such moves. The diagonal of such quadrilateral is not
in d and therefore has zero weight in both t, t′. The local picture around the quadrilateral is illus-
trated in Figure 2.1 where α, β, γ, δ are the weights of the four regions outside the quadrilateral.
See Figure 2.2 for an application of this local picture in our running example.

The equality [W (t)] = [W (t′)] then is an application of the “square switch” skein relation
[FLL19, Equation (6.2)] with parameters r := k, j := α + β,s := α, v := γ, ℓ := β + γ. Note
that j − ℓ+ v− s = 0, so the only term on the right hand side of [FLL19, Equation (6.2)] is the
case t = 0 with coefficient

(
0
0

)
= 1.

Remark 2.15. When the dissection dT happens to be a triangulation there is no freedom in our
constructions. In particular, this happens whenever the number of short arcs of M equals either
two or three. Such M are called tripartite pairings and have recently arisen in a seemingly
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Figure 2.1: The left picture indicates schematically a diagonal of t \ d (drawn dashed) which
can be flipped inside its quadrilateral to obtain a new triangulation t′. The numbers α, . . . , δ
indicate the weights of the four polygons outside this quadrilateral. The middle picture and right
diagrams are the local picture for the corresponding web diagrams W (t) and W (t′) inside the
quadrilateral. One has [W (t)] = [W (t′)] by a skein relation. See Figure 2.2 for an instance of
this for the web in our running example with α = 6 and β = γ = δ = 1.
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Figure 2.2: The left web is W (t) from our running example, cf. Figures 1.1 and 1.3. The right
web is W (t′) where t′ is the weighted triangulation obtained by the flip move at the right dashed
edge in t. These two webs are related by a square switch skein relation at the red edges, thus
define the same web invariant.
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different mathematical context [Jen21, JWY20]. We think it should be possible to state the main
identity from [Jen21] as a quadratic relation between SL2 web immanants.

When M has exactly two short arcs the corresponding web invariant is a cluster mono-
mial ∆I∆[2k]\I for a cyclic interval I ∈

(
[2k]
k

)
. Its web diagram is a disjoint union of two claw

graphs. When M has exactly three short arcs, the web diagram is a tree with one trivalent black
vertex connected to three interior white vertices. This special case of our construction was pre-
viously formulated by I. Le and E. Yildirim who prove moreover that these web invariants are
cluster variables.

3. Webs as plabic graphs

Forgetting the data of the edge multiplicities, any type 2 web (and as a special case, any standard
web) is in particular a plabic graph in the sense of [Pos06]. It is interesting to investigate how
tight the connection between webs and plabic graphs is, see also [FLL19, HR22]. In this section,
we explore the tableau-to-web map as a tableau-to-plabic-graph map. The results in this section
are mostly independent from the rest of the paper, although we will use the language of plabic
graphs and dimer covers to a small extent in the proof of Theorem 4.5.

We assume familiarity with the notions of positroids M ⊂
(
[n]
k

)
and their encodings by

decorated permutations π, Grassmann necklaces I⃗, or reduced plabic graphs G modulo move
equivalence. We work always with graphs which are bipartite (not just bicolored) with boundary
vertices colored black.

Let G be a reduced plabic graph in the n-gon. A dimer cover π of G is a subset π ⊂ E(G)
which covers each interior vertex once. We denote by ∂(π) ⊂ [n] the subset of boundary vertices
used in π. Observe that

#∂(π) = # of white vertices of G−# of interior black vertices of G. (3.1)

In particular this number depends only on G not on π. We denote this number by k and say
that G has type (k, n).
Remark 3.1. When W = W (tT ) is a tableau-to-web image of some T ∈ SYT(2ωk), the number
of white vertices of W is the number s = s(M(T )) of short arcs while the number of interior
black vertices is the number of triangles in a triangulation of the s-gon. It follows that the
number (3.1) equals 2 for W , i.e. that W is a plabic graph of type (2, 2k).

Definition 3.2 (Cyclic interval positroids). Let C1, . . . , Cs be a decomposition of [2k] into dis-
joint cyclic intervals. We obtain a positroid MC1,...,Cs ⊂

(
[2k]
2

)
whose bases are exactly the

pairs {i, j} with the property that i ∈ Ca and j ∈ Cb with a ̸= b.

The positroid subvariety ofGr(2, 2k) corresponding toMC1,...,Cs ⊂
(
[2k]
2

)
imposes the cyclic

rank condition
rank(vi : i ∈ Ca) ⩽ 1 (3.2)

with one such rank condition for each a = 1, . . . , s, where v1, . . . , v2k are the column vectors
of 2× 2k matrix representatives for points in Gr(2, 2k).
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Proposition 3.3. Let W (tT ) be an SLk web diagram arising by evaluating the tableau-to-web
map on T ∈ SYT(2ωk). Let C1, . . . , CS be the color sets of the noncrossing matching M(T ).
Then W (tT ) is a reduced plabic graph whose corresponding positroid is MC1,...,Cs .

Proof. Abbreviate W = W (tT ). Let Cj = (ij−1, ij] be a color set of M(T ). Then the boundary
vertices in Cj are incident to the same white vertex wj of W . For b = ij, . . . , ij+1 − 2, the zizag
path starting at b (also known as the trip starting at b) proceeds towj and then ends at vertex b+1.
It remains to understand the zigzag paths starting at ij − 1. The “interior” of W is the plabic
graph dual to a triangulation of the s-gon and the trips starting at ij − 1’s are identified with
trips in this smaller plabic graph. The zigzag paths of this smaller graph encode the top cell
for Gr(2, s), i.e. each such zigzag path proceeds two units clockwise. Using this reasoning, one
can see that the zigzag path of starting at ij − 1 ends at ij+2. We now see that G is reduced and
moreover we have computed its trip permutation. Using the standard recipes to translate from
trip permutations to rank conditions, we see that the rank conditions (3.2) hold; on the other
hand, by comparing with the top cell for Gr(2, s), we see that these are the only rank conditions
which hold, completing the proof.

We conclude this section with two remarks which explore further properties of the tableau-
to-plabic-graph map.
Remark 3.4. The data of W as a plabic graph does not specify the corresponding canonical basis
element [W ]. For example, the pair of weighted triangulations

••

• •2

2

2 21

t

••

• •1

1

3 31

t′ (3.3)

determine SL9 webs W (t) and W (t′) with the same underlying plabic graph but with different
edge multiplicities. As follows from Theorem 4.5, these two triangulations are dual to distinct
matchings of the 18-gon, hence [W (t) and [W (t′)] correspond to distinct canonical basis ele-
ments.
Remark 3.5. Not every decomposition [2k] = C1

∐
· · ·

∐
Cs into cyclic intervals arises from

a noncrossing matching. For example, it is necessary that each |Ci| ⩾ 2. More substantively,
there is no noncrossing matching of the octagon whose color sets have cardinalities 4, 2, and 2.
Even if we consider a set of cyclic intervals C1

∐
· · ·

∐
Cs which do come from a matching,

not every reduced plabic graph for the positroid MC1,...,Cs can be assigned edge multiplicities in
such a way that the corresponding web invariant is a canonical basis element.
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For instance, the plabic graph

• 5

• 4
•
3

•
2

•1

•10

•
9 •

8
•
7

•
6

◦ ◦

◦ ◦

•
•

(3.4)

can only be made into an SL5 web diagram in a unique way up to reflection in the 10-gon. One
can check that the resulting web diagram has nontrivial pairing with (at least) two different non-
crossing matchings in the sense of Definition 4.2 and is therefore not a canonical basis element.

We can explain “what goes wrong” with this plabic graph as follows. There is a unique
matching M of the 10-gon whose color sets are [1, 2], [3, 4, 5], [6, 7], and [8, 9, 10]. The corre-
sponding dissection d is a triangulated quadrilateral and the above plabic graph (3.4) corresponds
to the “other” triangulation of this quadrilateral, which is forbidden.

4. Web-matching duality

We start by reviewing some classical facts and some additional results from [FLL19].
We denote by S(λ) the irreducible representation of the symmetric group Sn indexed by

a partition λ of n. (Precisely, this means that the character χλ of S(λ) satisfies the equal-
ity 1

n!

∑
w∈Sn

χλ(w)pα(w) = sλ where sλ is the schur function, α(w) is the cycle type of w
written as a partition, and pα(w) is the corresponding monomial in power sum symmetric func-
tions.) Recall that each Sn-irrep is self-dual: S(λ) ∼= S(λ)∗ where asterisk denotes duality of
representations.

Let ε = S(ωn) denote the sign representation which is 1-dimensional. If λ and µ are con-
jugate partitions one knows that S(λ) ∼= S(µ) ⊗ ε. By Schur’s lemma, there is therefore a
unique Sn-equivariant map S(λ)∗ → S(µ) ⊗ ε, or equivalently, a unique equivariant pair-
ing S(λ)⊗ S(µ) → ε.

The action of Sn on Cn by coordinate permutation induces an action on the coordinate
ring C[Gr(k, n)]. Let C[Gr(k, dk)]std denote the subspace spanned by canonical basis vectors
indexed by standard Young tableaux. One knows that

C[Gr(k, dk)]std ∼= S(dωk)

as Sdk-modules. From the previous paragraph, one has a canonical pairing

⟨, ⟩ : C[Gr(k, dk)]std ⊗ C[Gr(d, dk)]std → ε. (4.1)

We will use this pairing to show that our tableau-to-web map is “the right one.”
Our next definition allows for explicit computations with this pairing.
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Definition 4.1. Let W be an SLk web diagram. A consistent labeling ℓ of W is a choice of
subset ℓ(e) ∈

(
[k]

mult(e)

)
for each edge e of W subject to the requirement that ℓ(e) and ℓ(e′) are

disjoint whenever e, e′ are incident edges of W .

Since the multiplicities around every vertex sum to k, the union of the subsets around every
interior vertex equals [k].

When W is a standard SLk web and ℓ is a consistent labeling, the labels of the boundary
edges ei for i = 1, . . . , dk determine a sequence of singleton subsets ℓ(e1), . . . , ℓ(en) of [k].
One can show that each number from 1, . . . , k appears exactly d many times in this sequence.
We call this the boundary word of ℓ and denote it by w(ℓ).

We now introduce several combinatorial gadgets which one can attach to such a word. Con-
sider the set

Ak,d = {11, . . . , 1d, 21, . . . , 2d, · · · , k1, . . . , kd}

with its symbols linearly ordered in the way we have just written them.

Definition 4.2. A (k, d) balanced word w is a word of length dk in which each symbol from
1, . . . , k appears exactly d times.

We associate a sign to such wordw as follows. We upgrade w to a permutation of the ordered
set Ak,d by adding subscripts to the appearances of symbol i so that subscripts increase from left
to right in w. Then we set sign(w) to be the sign of this permutation.

We associate a monomial in Plücker coordinates to such w as follows:

∆(w) :=
k∏

j=1

∆{i∈[dk] : wi=j} ∈ C[Gr(d, dk)]std.

Finally, given a standard SLk web W of degree d, we define a natural number

a(W,w) = #{ℓ : w(ℓ) = w},

the number of consistent labelings of W with boundary word w.

Example 4.3. Figure 4.1 gives a consistent labeling ℓ of the SL9 web W from Figure 1.1. The
boundary word of this labeling is

w(ℓ) = 123345566774899821 of type (9,2). (4.2)

The corresponding monomial

∆(w(ℓ)) = ∆1,18∆2,17∆3,4∆5,12∆6,7∆8,9∆10,11∆13,16∆14,15

is a noncrossing monomial for Gr(2, n).

By [FLL19, Equation (5.16) and Theorem 8.1], the unique pairing ⟨, ⟩ (4.1) can be under-
stood in terms of the numbers a(W,w):
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Figure 4.1: A consistent labeling ℓ of the SL9 web W from Figure 1.1. We write e.g. 1234789 to
indicate ℓ(e) = {1, 2, 3, 4, 7, 8, 9}. One sees each number 1, . . . , 9 around every interior vertex
and the cardinality of the set ℓ(e) matches multW (e). Each number i = 1, . . . , 9 appears exactly
twice as on a boundary edge of this labeling; joining these two copies by an arc yields the non-
crossing matching M from Figure 1.3 (redrawn at right for convenience). Web-matching duality
asserts that ℓ is the unique labeling of W whose boundary word is a noncrossing matching.

Lemma 4.4. For a standard SLk web W of degree d and a (k, d) balanced word w, one has

⟨[W ],∆(w)⟩ = a(W,w).

We now specialize to the case d = 2. A noncrossing matching M of the 2k-gon gives us
a (k, 2) balanced word w(M) with the property that the two locations of the symbol i in w(M)
are exactly the two endpoints of the ith arc of M in the 2k-gon. The word (4.2) is this word
when M is the matching from Figures 1.3 and 4.1. We abbreviate

∆(M) := ∆(w(M)).

Such monomials are called noncrossing monomials. These monomials are the canonical basis
for C[Gr(2, 2k)]std.

We arrive at our main combinatorial assertion.

Theorem 4.5 (Web-matching duality). For T ∈ SYT(2ωk), let W = W (tT ) be a web dia-
gram constructed via our tableau-to-web map. Let M = T (M) be the noncrossing matching
corresponding to T under the Catalan bijection.

Then a(W,w(M)) = 1 and a(W,w(M ′)) = 0 for noncrossing matchings M ′ ̸= M .

That is, the web invariant [W (tT )] is dual to the noncrossing monomial ∆(M) under the
pairing (4.1). Since this is true for any triangulation tT extending the dissection dT , we get an
alternative proof that the tableau-to-web-invariant map is well-defined.
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Proof. By induction on k with the base cases k = 1, 2 easily checked by hand. Suppose that ℓ
is a consistent labeling of W whose boundary word w(ℓ) is the word w(M ′) of a noncrossing
matching M ′ of the 2k-gon. We will argue that M ′ = M . (The uniqueness of the labeling ℓ will
also follow.)

Certainly, M ′ has at least one short arc i, i + 1. Suppose this is the jth arc of M ′ when
arcs are ordered by their left endpoints. This means that ℓ(ei) = ℓ(ei+1) = j. Thus, boundary
vertices i, i+ 1 are incident to different white vertices of W , thus i and i+ 1 reside in different
color sets of W , i.e. i, i+ 1 is also a short arc of M .

The edges e : j ∈ ℓ(e) form a dimer cover π of W whose boundary subset is given
by ∂(π) = {i, i + 1}. On the other hand, {i, i + 1} is a term in the Grassmann necklace I⃗
for the positroid MC1,...,Cs determined by the color sets C1, . . . , Cs of the matching M . Thus π
is the unique such dimer cover of W (see e.g. [MS17, Proposition 5.13]).

Given a dimer cover π of a web W , we obtain an SLk−1 web W \π from W by decrementing
the multiplicity of each edge used in π. That is, W \ π is the same underlying graph but has
multiplicity function

multW\π(e) =

{
multW (e)− 1 if e ∈ π

multW (e) if e ̸∈ π.

If multW (e) = 1 and e ∈ π, one can interpret this operation as deleting the edge e from W . In
the case of the dimer cover π from the previous paragraph, this means that the boundary edges
incident to vertices i, i+1 are deleted, and W \ π is naturally a degree two standard web on the
ground set [2k] \ {i, i+ 1}.

It follows that
a(W,M ′) = a(W \ π,M ′ \ {i, i+ 1}) (4.3)

where the notation M ′ \ {i, i + 1} stands for the noncrossing matching of the 2(k − 1)-gon on
the ground set [2k] \ {i, i + 1} obtained by removing the arc i, i + 1 from M ′. In particular
a(W \ π,M ′ \ {i, i+ 1}) ̸= 0.

To complete the proof, it would suffice to show that the SLk−1 web W \ π is an image of
the tableau-to-web map for the matching M \ {i, i + 1}, since by induction we would be able
to conclude that M ′ \ {i, i+ 1} = M \ {i, i+ 1}. As we will see, in the typical case, W \ π is
exactly the image of the tableau corresponding to the matching M i, i+ 1 under the tableau-to-
web map. This fails in certain degenerate cases, but we will show that in these cases, W \ π is
equivalent to such an image.

Let d, t be the dissection and chosen triangulation corresponding to T and W . We analyze
what happens when passing from M to M \ {i, i+ 1}.

The numbers i, i + 1 are in adjacent color sets of M , hence determine a side S of the dis-
section d and the triangulation t. If the weight of this side is at least two in t, then we decrement
the weight of S by one in when passing from M to M \ {i, i+1}. The two white vertices of W
corresponding to the side S have one smaller degree, hence each is joined to one fewer bound-
ary vertex (indeed the boundary edges incident to i, i+ 1 are deleted). We can choose the same
triangulation t (decrementing the weight of the corresponding side by one). Thus the underly-
ing plabic graph does not change. We decrement the multiplicity of exactly one edge around
each trivalent vertex (namely, we decrement the edge whose corresponding region contains the
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side S). Altogether, in passing from M to M \ M \ {i, i + 1} we delete the edges of a dimer
cover of W with boundary i, i+ 1. By the uniqueness, we must have deleted the edges in π, so
that W \ π indeed is an instance of the tableau-to-web map in this case.

To complete the proof, we need to analyze what happens in passing from M to M \{i, i+1}
in the special case that the side S has weight one in d. The color sets of M \ {i, i + 1} are
obtained by deleting i, i+1 from the ground set and merging the two color sets containing these
numbers. At the level of weighted dissections, we contract the side S to a point and replace
parallel weighted edges by a single edge while adding their weights. We can perform the same
contraction operation to the weighted triangulation t extending d. We delete exactly one triangle
during this process, namely, the triangle containing the side S. At the level of webs, we delete a
trivalent black vertex and merge the two white vertices which correspond to the deleted side S
while deleting their boundary legs at i, i+1. Let W ′ be the web which results from these steps.

The webs W \π and W ′ are related to each other by the following simple operation. Let t be
the triangle containing the side S in t. The corresponding trivalent black vertex b(t) ∈ W has
three edges, one of which is dual to the side S and has multiplicity one. Any dimer cover of W
with boundary i, i+1 must use this edge. Thus, we delete this edge in the web W \π so that b(t)
becomes a bivalent vertex. It is not hard to see that W ′ is obtained from W \π by contracting this
bivalent vertex. Contracting bivalent vertices does not effect the number of consistent labelings
so that a(W ′,M ′ \ {i, i + 1}) = a(W \ π,M ′ \ {i, i + 1}) ̸= 0. By the induction hypothesis
applied to W ′ we conclude that M ′ \ {i, i+ 1} = M \ {i, i+ 1} completing the proof.

5. Web invariants

We briefly review the definition of web invariant here.
We identify the coordinate ring C[Gr(k, n)] with the algebra of SLk-invariant polynomial

functions of n-tuples of vectors in Ck. For example, the Plücker coordinate ∆I is the SLk-
invariant polynomial

(v1, . . . , vn) 7→ det(vi1 , . . . , vik)

where i1, . . . , ik are the elements of I written in ascending order and (v1, . . . , vn) is an n-tuple
of vectors in Ck.

As a special case, we have the identification

C[Gr(k, dk)]std = HomSLk
(⊗dk

i=1Ck,C).

By multilinearity, an element of the above hom-space is determined by how it evaluates on
tensor products ei1 ⊗ · · · ⊗ eidk ∈ ⊗dkCk where each eij is a standard basis vector for Ck.

Definition 5.1 (Web invariant). Let W be a standard SLk web diagram of degree d. Then the
web invariant [W ] ∈ C[Gr(k, dk)](d) is the polynomial function defined by its evaluation on
tensor products of basis vectors as follows:

[W ](ei1 ⊗ · · · ⊗ eidk) = sign(w)a(W,w) (5.1)

for all words w = i1, . . . , idk drawn from [k].
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Remark 5.2. We have only defined sign(w) when w is a balanced word, but this is a necessary
condition for a(W,w) to be nonzero, so the above definition parses.

It follows from [FLL19, Lemma 5.4] that the function defined in this way indeed determines
an element of C[Gr(k, dk)]std.

When W is the claw graph on vertices 1, . . . , k (see Example 2.4), one has [W ] = ∆1,...,k

and (5.1) encodes the Liebnitz formula for the determinant.
Warning: Definition 5.1 is a slick way of defining [W ] for all standard SLk webs W , but

it sometimes is the “wrong” definition up to a sign. For example, this definition can clash with
the more familiar way of turning an SL2 or SL3 web into a web invariant up to a multiplicative
factor of −1. Thus, we refer to both [W ] and −[W ] as web invariants when stating our two main
theorems. Our next lemma identifies this sign discrepancy when k = 2 and allows us to identify
the “correct” sign for the webs W (tT ) in Section 7.

A noncrossing matching M of the 2k-gon naturally becomes a standard SL2 web WM by
replacing each arc ij ∈ M by a bivalent interior white vertex joined to vertices i and j by an edge
of multiplicity one. The reader should not confuse the SL2 web WM with the SLk webs W (tT )
which we have introduced in Section 2.

Our next result compares the web invariant [Wm] to the noncrossing monomial ∆(M).

Lemma 5.3. Let T ∈ SYT(2ωk) with entries i1, i2, . . . , ik in the first column. Let M = M(T ).
Then

[WM ] =
∏
j∈[k]

(−1)ij−j∆(M) ∈ C[Gr(2, 2k)].

Proof. We get a balanced word w(T ) of type (2, k) by putting 1’s positions i1, . . . , ik and
putting 2’s in positions [2k]\{i1, . . . , ik}. Thus every left endpoint of M is marked with a 1 and
every right endpoint is marked with a 2. It follows that ∆(M)(e(w(T )) = +1.

On the other hand, [WM(T )](e(w(T )) = sign(w(T )). The result follows by checking that

sign(w(T )) =
∏
j∈[k]

(−1)ij−j

which is easy to see.

6. Web immanants

We briefly review SL2 web immanants introduced by T. Lam [Lam15] in the spirit of [RS05].
A plabic network is a choice of reduced plabic graph G of type (k,n) together with an edge

weighting wtN : E(G) → C∗. For a dimer cover π of G let wtN(π) :=
∏

e∈π wtN(e) be the
product of the edge weights used in π. For I ∈

(
[n]
k

)
, one has the complex number

∆I(N) :=
∑

π : ∂(π)=I

wtN(π), (6.1)

a weight-generating function for dimer covers π of N using boundary vertices I .
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For any plabic network N , the numbers ∆I(N) : I ∈
(
[N ]
k

)
satisfy the Plücker relations,

i.e. they determine a point in the Grassmannian Gr(k, n). That is, for any N , one can find an
n-tuple (v1, . . . , vn) of vectors in Ck whose Plücker coordinates match the ∆I(N)’s:

det(vi1 , . . . , vik) = ∆I(N) for all I ∈
(
[n]

k

)
(6.2)

where again i1, . . . , ik are the elements of I in ascending order. It is known that the set of points
in Gr(k, n) which arise from a network N in this way is Zariski-dense.

The previous two paragraphs construct the canonical basis forC[Gr(k, n)](1) using networks.
The SL2 web immanants do the same for C[Gr(k, n)](2).

The next definition is the “semistandard analogue” of a noncrossing matching.

Definition 6.1. A partial noncrossing matching of type (k, n) is a pair (M,P ) where M is
a noncrossing matching of some subset S ⊂ [n] and P ⊂ [n] \ S is a subset satisfying
#S + 2#P = 2k. The content of a partial noncrossing matching (M,P ) of type (k, n) is
the sequence (d1, . . . , dn) defined by di = 1 when i ∈ S, di = 2 when i ∈ P , and di = 0
otherwise.

We think of elements of P as the result of merging two vertices in a short arc to obtain a
boundary vertex “matched with itself.”

Given a plabic graph network N of type (k, n), a 2-like subgraph W of G is an SL2 web
whose underlying plabic graph is a subgraph of N . Thus, W is a disjoint union of edges of
multiplicity two (henceforth often referred to as doubled edges), cycles of even length formed by
multiplicity-one edges, and multiplicity-one paths joining boundary vertices. Such W naturally
begets a type (k, n) partial noncrossing matching (M(W ), P (W )) where M is the noncrossing
matching of boundary vertices encoded by the paths of W and P is the subset of boundary
vertices whose boundary edge is doubled in W . The content of W matches the content of this
partial noncrossing matching.

Note that because the definition of plabic graph requires every boundary vertex to have degree
at most one, hence any 2-like subgraph is a type 2 web in the sense of Section 2.

Let c(W ) denote the number of cycles in W . One defines

wtN(W ) = 2c(W )
∏

e∈E(N)

wtN(e)
multW (e), (6.3)

a certain degree two analogue of the numbers wtN(π).
By definition, the web immanant F(M,P ) indexed by a partial noncrossing matching (M,P )

of type (k, n) is the element of C[Gr(k, n)](2) which evaluates on vectors (v1, . . . , vn) as follows.
Choose a plabic networkN of type (k, n)whose Plücker coordinates match those of (v1, . . . , vn)
as in (6.2). Then

F(M,P )(v1, . . . , vn) =
∑

M(W )=M,P (W )=P

wtN(W ),

where on the left hand side we evaluate the web immanant on (v1, . . . , vn) and on the right
hand side we sum over 2-like subgraphs W of N whose connectivity is given by (M,P ). By
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the aforementioned Zariski-denseness, this recipe indeed specifies F(M,P ) as an element of the
Grassmannian coordinate ring.

By [Lam19, Theorems 2.1, 5.5, and 5.13], the elementsF(M,P ) form a basis forC[Gr(k,n)](2).
This basis coincides with Lusztig’s canonical basis for Ln(2ωk) and inherits many good prop-
erties. The basis is cyclically invariant and has good restriction properties to positroid sub-
varieties of Gr(k, n). Moreover, each basis element is nonnegative when evaluated on points

in Gr(k, n) ∩ RP(
n
k)−1

⩾0 .

7. Semistandardization

The constructions in Sections 2, 4, and 5 were formulated for standard tableaux. We now extend
the tableau-to-web map to the setting of semistandard tableaux and prove Theorems A and B.

The following encoding step appears often in this section. Let (d1, . . . , dn) be a sequence
drawn from {0, 1, 2} and with

∑
i di = 2k. Then there is a unique weakly increasing se-

quence a1, . . . , a2k in which each symbol i = 1, . . . , n appears exactly di many times. We
say that (d1, . . . , dn) encodes to the sequence a1, . . . , a2k.

Definition 7.1 (Standardization of T ). The standardization of T ∈ SSYT(2ωk, [n]) is the stan-
dard tableau T̂ ∈ SYT(2ωk) defined as follows. Let (d1, . . . , dn) be the content of T encoded
as the sequence a1, . . . , a2k. One has a sequence of tableaux ∅ =: T0 ⊂ · · · ⊂ T2k := T via the
following requirements:

• each Ti is obtained from its predecessor Ti−1 by adding a single box filled with the number
ai

• if ai = ai+1, then the box Ti \ Ti−1 is in the first column.

The tableau T̂ is defined by instead filling the box Ti \ Ti−1 with the number i rather than the
number ai.

Remark 7.2. Recall that the first column of T ∈ SYT(2ωk) encodes left endpoints of arcs in the
matching M(T ), i.e. the endpoint of the arc which is smaller in the order 1 < 2 < · · · < 2k.
Standardization says that when T has two copies of the same number, we should regard the entry
that appears in the first column as “smaller.”

Definition 7.3 (Semistandard tableau-to-web map). Let T ∈ SSYT(2ωk, [n]) with content en-
coded by the sequence a1, . . . , a2k. Let Ŵ be a tableau-to-web image of the standardization T̂ .
Thus Ŵ has boundary edges e1, . . . , e2k and is drawn in the 2k-gon. We construct a web W in
the n-gon which has the same interior vertices and edges as Ŵ and the same edge multiplicities,
but whose edge ei is attached instead to the boundary vertex ai in the n-gon. By definition, such
a web W is a tableau-to-web image of T .

Note that the content of the web diagram W constructed in this way matches the content of
the semistandard tableau T .
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Figure 7.1: To obtain a tableau-to-web image of the semistandard tableau T at left, we standard-
ize T to obtain the tableau from Figure 1.1 and then reattach the legs of the web from Figure 1.1
according to the sequence (7.1).

Example 7.4. The semistandard tableau T in Figure 7.1 standardizes to the standard tableau in
Figure 1.1 that has served as our running example. It has content sequence

(d1, . . . , d18) = (1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 0, 1).

This sequence encodes to the sequence

a1, . . . , a18 = 1, 2, 3, 3, 4, 5, 7, 8, 8, 9, 10, 11, 12, 14, 14, 15, 16, 18. (7.1)

To obtain a tableau-to-web image of T , we reattach the 18 boundary legs of the web in Figure 1.1
according to this sequence as we have done in Figure 7.1.

The invariant [W ] of a nonstandard web is defined in the following way:

[W ](v1, . . . , vn) = [Ŵ ](va1 , . . . , va2k) (7.2)

where a1, . . . , a2k is the sequence which encodes the content of W . Thus, we evaluate [W ]
on (v1, . . . , vn) by “forgetting” the vectors vi for which di = 0 and using the vectors vi
with di = 2 “twice.”

Next we turn to standardization of partial noncrossing matchings. Let (M,P ) be a par-
tial noncrossing matching of type (k, n) whose content is encoded by a1, . . . , a2k. We obtain
a noncrossing matching (̂M,P ) uniquely by joining i and j in the 2k-gon if either ai = aj
or ai ̸= aj and ai is joined to aj in M .

Note that the condition ai = aj and i < j only happens when in fact j = i+ 1.
Remark 7.5. To a pair (M,P ) as above, we associate a semistandard tableau

T (M,P ) ∈ SSYT(2ωk, [n])
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by first computing the tableau T̂ := T ((̂M,P )) ∈ SYT(2ωk) using the Catalan bijection,
and then replacing the symbol i ∈ T̂ with the symbol ai ∈ T . It is simple to check that the
map (M,P ) 7→ T (M,P ) is bijective. Thus, SL2 web immanants can be indexed by semistan-
dard tableaux rather than by partial noncrossing matchings.

Example 7.6. The tableau T from Example 7.4 corresponds to the partial noncrossing match-
ing (M,P ) of type (9, 18) defined as follows. The setS from the definition of partial noncrossing
matching is equal to [18] \ {3, 6, 8, 13, 14, 17}. The matching M on the ground set S consists of
the pairs {1, 18}, {2, 16}, {4, 11}, {5, 7}, {9, 10}, and {12, 15}. The set P is {3, 8, 14}. Note
for example that the content of (M,P ) agrees with the content of the tableau T .

Lemma 7.7. For a partial noncrossing matching (M,P ) as above, one has

F(M,P )(v1, . . . , vn) = F
(̂M,P )

(va1 , . . . , va2k). (7.3)

Here we have indexed the immanant on the left hand side by a partial noncrossing matching
as in Remark 7.5.

The immanant on the left hand side of this equality is a function onGr(k, n) (evaluated on the
n-tuple of vectors v1, . . . , vn ∈ Ck) while that on the right hand side is a function on Gr(k, 2k).

Proof. Given a (k, n) plabic network N , and a content vector d = (d1, . . . , dn) drawn
from {0, 1, 2} and with

∑
di = 2k, we will define a network splitd(N) of type (k, 2k) by the

following steps. First, let (a1, . . . , a2k) be the weakly increasing sequence encoding d. Second,
recall that the definition of plabic graph mandates that each boundary vertex of N has degree at
most one. If boundary vertex i has degree one, we denote by vi its neighboring interior vertex.
Then splitd(N) is obtained from N by

• deleting all boundary edges ivi (if they are present),

• adding boundary edges ivai for i = 1, . . . , 2k whose weight matches the weight of the
edge ivi

That is, the ith boundary edge of N gives rise to one or two boundary edges of splitd(N) accord-
ing to whether di equals one or two. This recipe does not affect any interior vertices or edges.
In particular, it does not change the quantity (3.1), so that splitd(N) indeed has type (k, 2k).

By a direct argument using matchings, it is straightforward to see that if N has the same
Plücker coordinates as an n-tuple of vectors (v1, . . . , vn), then splitd has the same Plücker coor-
dinates as the sequence (va1 , . . . , v2k). Thus, we can prove the desired equality (7.3) by proving
the equality of weight-generating functions for 2-weblike subgraphs of N and splitd(N).

Next, letW be a 2-like subgraph ofN . Recall thatW is a type 2 web, and letd = (d1, . . . , dn)
be its multiweight vector. Then d is a sequence as in the first paragraph. For any i with di = 2,
there are consecutive indices j, j + 1 such that aj = aj+1 = i. We obtain a 2-like sub-
graph splitd(W ) of the network splitd(N) by replacing each doubled boundary edge ivi ofW by
a pair of multiplicity-one edges jvi and (j + 1)vi, setting the weights of these new edges equal
to wtW (ivi). That is, we “split up“ the doubled boundary edge in W to two multiplicity-one
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edges in splitd(W ), joining the interior vertex vi to adjacent boundary vertices. (The rest of W
is left intact.) Clearly one has

wtN(W ) = wtsplitd(N)(splitd(W ))

with wt as defined in (6.3).
Observe that whenever aj = aj+1 = i as in the previous paragraph, the boundary ver-

tices j, j + 1 are connected (in the matching-connectivity sense) by a multiplicity-one path in
the 2-like subgraph splitd(W ). Observe also that any 2-like subgraph of splitd(W ) which con-
nects these two boundary vertices must use the boundary edges jvi and (j + 1)vi.

Using the first observation in the previous paragraph, one can see that if W has connectivity
given by the partial noncrossing matching (M,P ), then splitd(W ) has connectivity given by the
noncrossing matching (̂M,P ). Indeed, recall that the latter matching is obtained from (M,P )
by “splitting” each element of P (a boundary vertex of the n-gon “paired with itself”) into a
short arc in the 2k-gon. This is exactly what the passage W 7→ splitd(W ) accomplishes at the
level of connectivity.

We have so far explained that every 2-like subgraphW ofN with connectivity (M,P ) begets
a 2-like subgraph split(W ) of splitd(N) with connectivity (̂M,P ) and with the same weight.
Moreover, every 2-like subgraph of splitd(N) with the correct connectivity arises in this way,
using the second observation from two paragraphs previous. This establishes the desired equality
of generating functions, completing the proof.

We conclude by proving Theorems A and B.

Proof. We will first show that every dual canonical basis element corresponding to a stan-
dard tableau is a web invariant and then deduce the statement for semistandard tableaux using
Lemma 7.7.

Consider a standard tableau T ∈ SYT(2ωk) and let i1, . . . , ik be the entries in its
first column. By Theorem 4.5, the web invariant [W (tT )] is dual to the noncrossing mono-
mial ∆(M) ∈ C[Gr(2, 2k)]std. On the other hand, by [FLL19, Equation (5.17)], the web im-
manant FM is dual to [WM ] which equals

∏
j(−1)ij−1∆(M) using Lemma 5.3. (This is be-

cause Web2(N) is a generating function for the [WM ]’s rather than for the ∆(M)’s, see [FLL19,
Definition 4.2 and equation (5.6)].)

By comparing these, it follows that
∏

j(−1)ij−1[W (tT )] is a web immanant, i.e. a canonical
basis element by [Lam19, Theorem 2.1 (2)]. This establishes Theorem A and equivalently B for
standard tableaux.

The web invariant for a semistandard tableau is defined in terms of those for standard tableaux
by the evaluation equation (7.2). We have checked that the same relationship holds between
standard web immanants and semistandard ones in Lemma 7.7. Thus each web invariant for
semistandard tableaux is also a web immanant, which establishes B and thus A, completing the
proof.
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