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A B S T R A C T

The structure of many complex social networks is determined by nodal and dyadic covariates that are
endogenous to the tie variables. While exponential-family random graph models (ERGMs) have been very
successful in modeling social networks with exogenous covariates, they are often misspecified for networks
where some covariates are stochastic. Exponential-family random network models (ERNMs) are an extension of
ERGM that retain the desirable properties of ERGM, but allow the joint modeling of tie variables and covariates.
We compare ERGM to ERNM to show how conclusions of ERGM modeling are improved by consideration of
the ERNM framework. In particular, ERNM simultaneously represents the effects of social influence and social
selection processes, while commonly used models do not.
1. Introduction

Social network analysis has been highly valued in the social sci-
ences in recent decades. Statistical models are widely used in various
fields to represent network structure. The well-known exponential-
family random graph model (ERGM) is widely applied, where random
graphs consist of a selection of nodes with some fixed nodal or dyadic
covariates and random connections (edges) between nodes (Frank and
Strauss, 1986; Hunter and Handcock, 2006; Lusher et al., 2013).

While many covariates, such as age, may be exogenous with the ran-
dom connections, it is common for some of the covariates to be endoge-
nous with the connections or other covariates (e.g., self-esteem, gen-
der). ERGM is a work-horse family for modeling social networks with
covariates, partially because of their generality and flexibility (Frank
and Strauss, 1986; Hunter and Handcock, 2006; Lusher et al., 2013)
and partially because of the quality software environments for their
use (Handcock et al., 2021; Morris et al., 2008). However, they as-
sume that the covariates are exogenous or, at least, only model the
network structure conditional on the observed covariates. Hence they
are misspecified for networks where some covariates are stochastic. The
processes of edge and covariate formation commonly occur simultane-
ously (Leenders, 1997).

As an important motivating case, social and psychological theory
often presumes that an individual’s social relationships and their self-
esteem influence each other (Leary, 2023/06/17). Harris and Orth
(2020) conducted an analysis of the empirical evidence for this theory
and found ‘‘that the link between people’s social relationships and
their level of self-esteem is truly reciprocal in all developmental stages

∗ Corresponding author.
E-mail address: andrea.wang@ucla.edu (Z. Wang).

across the life span, reflecting a positive feedback loop between the
constructs’’. Hence treating a person’s self-esteem as a fixed, unchange-
able characteristic rather than representing its co-dependence with the
person’s social relationships will likely misrepresent the structure of the
social relationships and also the relevance of self-esteem.

A generalization of ERGM called the exponential-family random net-
work model (ERNM) was developed in Fellows (2012) and Fellows and
Handcock (2012). ERNMs are flexible and interpretable models that can
represent endogenous edge and node dynamics in cross-sectional data.
It represents both ‘‘social selection’’ and ‘‘social influence’’ processes,
where the former states that the social connections are determined
by the nodal attributes (Robins et al., 2001a; Friemel, 2015) and the
latter holds that the nodal attributes are determined by the social con-
nections (Robins et al., 2001b). ERNM represents a joint exponential-
family model, where some or all the nodal/dyadic attributes and social
connections (edges) are treated as endogenous.

The research on the interdependence of network structure of so-
cial connections and nodal attributes has been extensively conducted
in social sciences. Most statistical models that can represent this in-
terdependence require longitudinal data (We discuss exceptions in
Section 4). As such, ERNM is a valuable addition to this field.

This paper is structured as follows. In the next section (Section 2),
we introduce the ERGM and ERNM classes with their model specifica-
tions, and we discuss their model interpretations. Section 3 focuses on
some interesting network statistics and model estimation. In Section 4,
we compare ERGM and ERNM conceptually. We show how ERNMs
can correctly model the joint effects of tie variables and covariates,
https://doi.org/10.1016/j.socnet.2023.07.003
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while commonly used models fail when the covariates are endogenous.
A case-study is conducted in Section 5, which includes a detailed
modeling and analyzing study using both ERGM and ERNM for an
adolescent health dataset (Harris et al., 2007). Section 6 discusses the
results of the comparisons and concludes the paper.

2. ERGM and ERNM classes

We consider the situation where the network is the result of a social
process modeled stochastically. For a social network (𝑋, 𝑌 ), with 𝑛
nodes, 𝑌 ⊂ R𝑛×𝑛 ∈  is the graph with 𝑋 ⊂ R𝑛×𝑛×𝑞 ∈  as dyadic
ttributes. The space of tie variables,  , can be arbitrary although here
e focus on binary tie variables:

𝑖𝑗 =

{

1 if actor 𝑖 is connected to actor 𝑗
0 otherwise,

, 𝑗 = 1,… , 𝑛. For undirected networks, 𝑌𝑖𝑗 = 𝑌𝑗𝑖. 𝑌 is often called
an adjacency matrix. The dyadic covariates, 𝑋𝑖𝑗𝑘, are measures on the
(𝑖, 𝑗)th pair. An important special case is covariates that depend only
on 𝑖 or 𝑗, that is, nodal covariates denoted by 𝑋𝑖𝑘 or 𝑋𝑗𝑘. Examples of
dyadic covariates include a homophily term:

𝑋𝑖𝑗𝑘 =

⎧

⎪

⎨

⎪

⎩

1 if actor 𝑖 and actor 𝑗 have identical values
on the 𝑘th nodal characteristic (𝑋𝑖𝑘 = 𝑋𝑗𝑘)

0 otherwise,

= 1,… , 𝑞, for each of 𝑞 separate nodal characteristics. Some of
hese dyadic covariates can be stochastic, that is, covarying with
ifferent realizations of the tie variables, and some of them can be
xogenous (that is, not varying with different realizations of the tie
ariables). In the case study we consider in Section 5, for example,
he tie variables are friendships between students within a high school.
here are covariates of the nodes (students), such as age, sex, and
rade, that are appropriately modeled as non-stochastic or exogenous.
owever, there is also a covariate that indicates if the student smokes.
his is likely covarying with the friendship tie variables due to social
election processes and/or social influence processes. Hence it is ap-
ropriate to model it as jointly stochastic with the tie variables (that
s, endogenously). In most circumstances, the set of dyadic covariates
ill contain both exogenous and endogenous covariates. This paper

s mainly interested in the situation where at least one endogenous
ovariate exists.

.1. ERGM specification

The basic construction of an ERGM includes a graph 𝑌 ∈  that can
be explained by some sufficient statistics defined by a 𝑑-vector valued
function 𝑔(). A general form of ERGMs that describes a probability
distribution of undirected graphs with 𝑛 nodes:

𝑃𝜂(𝑌 = 𝑦) = 1
𝑐(𝜂,)

exp {𝜂 ⋅ 𝑔(𝑦)} 𝑦 ∈  , (1)

where 𝜂 ∈ R𝑑 is a parameter vector associated with a 𝑑-vector valued
unction 𝑔() and 𝑐(𝜂,) is the normalizing constant which ensures
hat this is a proper probability distribution. The family of models has
he property of having the maximum entropy among all probability
istributions that satisfy the mean constraint on 𝑔(𝑦), where E𝜂[𝑔(𝑦)] =

𝜇. Different choices of 𝑔() determine different models within the
ERGM family.

Different from traditional statistical models that measure observa-
tions with some predefined response variables and explanatory vari-
ables separately, exponential-family random graph models (ERGMs)
consist of explanatory variables that are functions of response variables
themselves. More specifically, in a network, the response variables are
typically defined as the state of a tie 𝑦 – either formation or dissolution.
In general ERGMs (1), the graph statistics 𝑔(𝑦) are configurations of

ties, where 𝑔() are jointly sufficient for the model. The observations o
in network data also consist of nodal attributes 𝑥, for example, the age
of nodes. The nodal attributes can be included in ERGMs as exogenous
predictors (Fienberg and Wasserman, 1981; Wasserman and Pattison,
1996). Writing this explicitly:

𝑃𝜂(𝑌 = 𝑦|𝑋 = 𝑥)

= 1
𝑐(𝜂, 𝑥,)

exp {𝜂 ⋅ 𝑔(𝑦|𝑥)} 𝑦 ∈  , 𝑥 ∈  , (2)

here 𝜂 ∈ R𝑑 is a 𝑑-vector of parameters. 𝑔(𝑦|𝑥) is a 𝑑-vector
f graph statistics, where 𝑔(|𝑥) are jointly sufficient statistics. The
ormalization constant is 𝑐(𝜂, 𝑥,) =

∑

𝑦∈ exp {𝜂 ⋅ 𝑔(𝑦|𝑥)}.
Choices of network statistics of interest depend on common knowl-

dge and the social context. Morris et al. (2008) provides examples of
he common features.

.2. ERNM specification

Exponential-family random network models (ERNMs) generalize
RGMs by treating the nodal attributes as endogenous variables (Fel-
ows and Handcock, 2012). This was inspired by Leenders (1997),
hich argued that the process of social selection and nodal attributes

nfluence are simultaneous. ERNMs model the joint relationship
etween edges and nodal variates. The ERNM distribution for 𝑌 is

𝑃𝜂(𝑌 = 𝑦,𝑋 = 𝑥)
1

𝑐(𝜂, )
exp {𝜂 ⋅ 𝑔(𝑦, 𝑥)} (𝑦, 𝑥) ∈  , (3)

here  is the sample space of 𝑌 and 𝑋, 𝜂 ∈ 𝛬 is a 𝑞-vector of pa-
ameters, 𝑔(𝑦, 𝑥) is a 𝑞-vector of network statistics, with 𝑔(𝑌 ,𝑋) jointly
ufficient for the model, and 𝑐(𝜂, ) is the normalization constant. The
ormal definition of 𝑐(𝜂, ) is given in Fellows and Handcock (2012):
et (𝑁, , 𝑃0) be a 𝜎-finite measure space with reference measure 𝑃0.
hen, a probability measure to this space is an ERNM if it is dominated
y 𝑃0. The normalization constant is defined as

(𝜂, ) = ∫𝑦,𝑥∈
exp {𝜂 ⋅ 𝑔(𝑦, 𝑥)}𝑑𝑃0(𝑦, 𝑥), (4)

here 𝛬 ⊂ {𝜂 ∈ R𝑞 ∶ 𝑐(𝜂, ) < ∞}.

.3. Model interpretation

To interpret the coefficient of ERGM, consider the logit form of
xponential family models (2):

ogit
(

𝑃𝜂(𝑌𝑖𝑗 = 1|𝑌 𝑐
𝑖𝑗 = 𝑦𝑐𝑖𝑗 )

)

= 𝜂 ⋅
(

𝑔(𝑦+𝑖𝑗 ) − 𝑔(𝑦−𝑖𝑗 )
)

, (5)

here 𝑦𝑐𝑖𝑗 is the set of tie values 𝑦⧵𝑦𝑖𝑗 , 𝑦+𝑖𝑗 and 𝑦−𝑖𝑗 correspond to the
raphs (𝑦𝑐𝑖𝑗 , 𝑦𝑖𝑗 = 1) and (𝑦𝑐𝑖𝑗 , 𝑦𝑖𝑗 = 0), respectively, 𝑌 𝑐

𝑖𝑗 is the random
ariable 𝑌 ⧵𝑌𝑖𝑗 . This is often referred to as the conditional log-odds of a
ie 𝑌𝑖𝑗 . We see that 𝜂 has the interpretation of the change in conditional
og-odds of a tie 𝑌𝑖𝑗 per unit change in the graph statistics were 𝑦𝑖𝑗
oggled from zero to one.

The interpretation of graph statistics 𝑌𝑖𝑗 of ERNM is very similar to
RGM. The only difference is that ERNM models need to consider the
ovariates 𝑋. From (3) we have:

logit
(

𝑃𝜂(𝑌𝑖𝑗 = 1|𝑌 𝑐
𝑖𝑗 = 𝑦𝑐𝑖𝑗 , 𝑋 = 𝑥)

)

= 𝜂 ⋅
(

𝑔(𝑦+𝑖𝑗 , 𝑥) − 𝑔(𝑦−𝑖𝑗 , 𝑥)
)

,

o that the ERNM parameter has a closely allied interpretation to that
f the ERGM parameter as the distribution of 𝑌 explicitly conditional
n 𝑋 is the same as the ERGM with implicit conditioning on 𝑋. This
mplies that we are able to interpret the parameter of ERNMs in a
imilar fashion as ERGMs. See Appendix A.2 for a derivation.

There are other interpretations as well. Fellows and Handcock
2012) discusses the way to interpret coefficients of dyadic variables

f ERNM with logistic regression. The dyadic attributes 𝑋 in Eq. (3)
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can be partitioned into two parts, 𝑍 and 𝑇 by defining 𝑍 ∈ (0, 1) as a
binary dyadic variate of interest (that is an outcome variable) and 𝑇 as
a matrix of regressors, where 𝑍, 𝑇 ⊂ 𝑋. We can rewrite Eq. (3) with
the new definition:

𝑃𝜂(𝑌 = 𝑦,𝑍 = 𝑧, 𝑇 = 𝑡)
1

𝑐(𝜂, )
exp {𝛼 ⋅ 𝑔(𝑦, 𝑡) + 𝜆 ⋅ ℎ(𝑦, 𝑧) + 𝑧 ⋅ 𝑡𝛽}

(𝑦, 𝑥) ∈  , (6)

where 𝜂 = (𝛼, 𝛽, 𝜆) are parameters, 𝑔(𝑦, 𝑡) and ℎ(𝑦, 𝑧) are network
statistics, 𝑧 ⋅ 𝑡𝛽 is the relationship of 𝑇 to 𝑍. We can then derive the
logit form of the distribution of 𝑧𝑖𝑗 from Eq. (6) condition upon the
rest of the network (proof details in Appendix A.2):

logit
(

𝑃𝜂(𝑧𝑖𝑗 = 1|𝑧𝑐𝑖𝑗 , 𝑡𝑖𝑗 , 𝑌 = 𝑦)
)

= (𝑡𝑖𝑗𝛽) −
(

𝜆 ⋅ (ℎ(𝑦, 𝑧−𝑖𝑗 ) − ℎ(𝑦, 𝑧+𝑖𝑗 ))
)

, (7)

where 𝑧𝑖𝑗 and 𝑡𝑖𝑗 are the measures on the (𝑖, 𝑗)th pair of 𝑍 and 𝑇 , 𝑧𝑐𝑖𝑗
is the set of variants 𝑧 ⧵ 𝑧𝑖𝑗 , 𝑧+𝑖𝑗 and 𝑧−𝑖𝑗 correspond to the variant of 𝑧𝑖𝑗
where 𝑧𝑖𝑗 = 1 and 𝑧𝑖𝑗 = 0, respectively. Suppose the matrix of regressors
𝑡𝑖𝑗 changes to 𝑡′𝑖𝑗 , with all other variables and networks remaining fixed,
then the logarithm of odds ratio (𝑅) is

ln𝑅 = 𝛽 ⋅ (𝑡𝑖𝑗 − 𝑡′𝑖𝑗 ). (8)

Therefore, the coefficients of the outcome variable 𝑧 may be inter-
preted as a conditional logistic regression model. For one unit change
in 𝑡𝑖𝑗 , the log-odds changes by 𝛽, keeping all other variables constant.

3. Specification and estimation for ERGM and ERNM

Choices of statistics for modeling are very flexible and case-based.
Statistics like edges, mutuality, homophily, and transitivity are primary
choices to be included in the model to grasp the major characteristics
of the network. For example, the R package ergm contains over one-
hundred ‘‘terms’’, each being a coherent set of graph statistics (R
Development Core Team, 2022; Handcock et al., 2021; Morris et al.,
2008).

The set of network statistics for ERNM includes those for the ERGM,
with the difference that they have different roles in the model due to the
endogeneity of nodal attributes. Moreover, some statistics, for example,
those that involve the nodal characteristics but not the tie values, are
specific to ERNM but not to ERGM. An example of such a statistic, one
with an important role below in this paper, is the number of students
who are smokers in Section 5.2.

3.1. Primary network statistics for ERGM and ERNM

Some fundamental statistics, for example, edges, density, and mutu-
ality measure the overall propensity for a tie in the network, and more
sophisticated terms can be found in Morris et al. (2008) and Handcock
et al. (2021).

Here we focus on two interesting features: homophily and transi-
tivity. Homophily measures the tendency of individuals with similar
attributes to connect compared to individuals with dissimilar attributes.
There is uniform homophily and differential homophily. Uniform ho-
mophily counts the number of ties where the attributes of the two
incident nodes are the same. Differential homophily accounts for each
value of the identical attributes, so it will give 𝑘 statistics if there are
𝑘 unique values of the attribute. This is called nodematch in ergm
nomenclature.

Informally, transitivity is the tendency of people to cluster to-
gether. A famous analogy illustrates this as ‘‘the friend of my friend
is my friend’’. Hence, this term exhibits a triad-closure feature. This
tendency can be quantified: consider a three-number summary of
the triads in an undirected graph or network being the number of
ties, 1
3
∑

𝑖𝑗𝑘 𝑦𝑖𝑗 + 𝑦𝑗𝑘 + 𝑦𝑖𝑘, the number of two-stars, ∑𝑖𝑗𝑘 𝑦𝑖𝑗𝑦𝑖𝑘, and the
umber of triangles, ∑𝑖𝑗𝑘 𝑦𝑖𝑗𝑦𝑖𝑘𝑦𝑗𝑘. A sophistication of the number of
riangles is the edgewise shared partner statistics, ESP(𝑘), representing
hat the number of unordered pairs {𝑖, 𝑗} such that an edge exists
etween 𝑖 and 𝑗, 𝑖 and 𝑗 have exactly 𝑘 common neighbors. A highly
ransitive graph would have a lot of triangles relative to the number
f two-stars. It would seem natural to include these three statistics in
model and use them to measure transitivity. However, models with

hese terms in them have been shown to have bad statistical properties,
eferred to as model degeneracy. So we will instead use a measure of
ransitivity that does have better properties: the geometrically weighted
dgewise shared partner statistics (GWESP) (Hunter and Handcock,
006). A tie that closes triangles is more likely to form than a tie
hat does not close triangles. As more shared partners of an edge exist,
he effect on GWESP decays in a geometric sequence, down-weighting
he influence on GWESP as a measure of transitivity of these clustered
riangles.

Homophily measures the tendency of individuals to connect with
imilar individuals, and it is more fundamental than transitivity. To
ome degree, homophily produces transitivity. Hence, we expect the
nclusion of transitivity terms in the model to measure above and
eyond what homophily does.

We will include both homophily and GWESP terms under ERGMs
nd ERNMs in the case-study. The performance in capturing transitivity
nd homophily of the two models will be analyzed.

The nodecount term counts the number of nodes with the certain
ttribute value of a covariate variable. This term is specifically for
RNM because this count is invariant in ERGM. The typical ERNM
ould include nodecount terms since they have the same role for the
revalence of covariate values as the Edges term does for tie density.
s the ERNM allows endogenous nodal attributes, the nodecount term
n the stochastic covariate is used to capture its random prevalence.

.2. Degeneracy and MCMC diagnostics

The inference on ERGM parameters typically employs Markov Chain
onte Carlo (MCMC) procedures to compute the maximum likeli-

ood estimation (MLE) (Hunter and Handcock, 2006). Likelihood-based
nference for ERGMs with only dyadic independence terms can be com-
uted easily and deterministically. For models with dyad dependence,
s for the models considered here, certain combinations of terms result
n the model not placing sufficient probability mass on realistic graphs
nd networks. This is called the model degeneracy problem (Handcock,
003a,b; Schweinberger, 2011; Schweinberger et al., 2020). It is impor-
ant to look at the diagnostics of the algorithms used to approximate
he likelihood function to ensure they are computationally accurate and
he model is realistic.

. Comparing ERGM to ERNM conceptually

A main goal of social network analysis is to model the relationship
etween social ties in the context of nodal attributes. Two types of
rocesses are commonly considered: social selection and social influ-
nce. In social selection processes, individuals form social ties on the
asis of attributes, theirs, and others (Robins et al., 2001a; Friemel,
015). In social influence processes, the direction is reversed, where
he network structure influences the attributes of the individuals in the
etwork; that is, an individual’s attributes may be changed by other
ndividuals whom they share social ties with (Robins et al., 2001b).

e follow the definition of the social selection and social influence
rocesses in Leenders (1997):

1. Social selection process: Conventional network statistical models
represent the network structure stochastically, measure the dy-
namic change of the network, and treat the nodal attributes as

independent variables (or explanatory variables), usually stable
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Fig. 1. Illustration of social selection: Color of nodes: nodal attributes.

Fig. 2. Illustration of social influence: Color of nodes: nodal attributes.

and fixed. The nodal attributes in this context refer to some fixed
actor characteristics, such as age, gender, and race. The involved
process is called the social selection process, where the network
structure is determined by some fixed actor attributes.

2. Social influence process: Conversely, actors may alter their at-
tributes because of the influence of the network structure they
are embedded in. In other words, the network structure is condi-
tioned on and regarded as exogenous and is invariant over time,
whereas the actor attributes are modeled stochastically. This
process is called the social influence process (some literature
uses the term ‘‘contagion’’).

The two processes can be illustrated using network examples shown
n Figs. 1 and 2. Both figures contain networks with four nodes (actors),
, B, C, D, and social ties. In Fig. 1, two new ties are formed between
odes with the same color (A and B, C and D). It is the tendency
f which an individual makes connections with other individuals that
hare the same attributes, such as age or habits, which is referred to as
ocial selection. In Fig. 2, node A and node D adjust their color to the
odes which they share ties with (B and D, respectively). Hence, social
nfluence processes describe the tendency that individual may change
heir attributes influenced by other related individuals.

It is essential to note that these are rarely disjoint processes. Specif-
cally, we would expect that a mixture of social selection and social
nfluence processes occur simultaneously. It is extensively argued that
he two processes are not mutually exclusive: the social ties affect the
odal attributes and vice versa (Erickson, 1988; Leenders, 1997). As
e shall see, this is precisely the situation that ERNM represents, while
RGM and autologistic actor attribute models (ALAAM) (Robins et al.,
001b; Lusher et al., 2013, Chapter 9) do not. ALAAMs are developed
s alternatives to ERGMs to capture social influence processes. ALAAMs
odel how network relationships influence the nodal attributes, for

nstance, how friendship of adolescents may influence their smoking
ehaviors (nodal attributes). Hence, ERNM can be thought of as jointly
RGM and ALAAM, plus more. Explicitly, ERGM and ALAAM are each
iven by conditional views of ERNM. ERGM and ALAAM are each
pecial cases of ERNM, a point we make here and one developed
ore fully in Fellows and Handcock (2012). ERNM represents the joint

onnection between the social selection and social influence processes.
onsequently, both nodal attributes and social connections are treated
s endogenous and stochastic variables, reflecting reality. Moreover,
espite what many network models assume, it is implausible to have

nvariant nodal attributes in the network, as ERGM assumes. Although
some reference nodal attributes in social selection processes, such as
sex, age, and race, are invariant in social influence processes, many
other attributes, such as smoking and drinking behaviors, may be
altered by the network structure. Despite this, the two social net-
work processes are widely studied in the literature separately, the
mutual interdependence between the two processes being rarely jointly
modeled.

ERNMs are exponential-family graph models that model the joint
behavior of edges and nodal attributes. The model (3) can be rewritten
as

𝑃𝜂(𝑌 = 𝑦,𝑋 = 𝑥) = 𝑃𝜂(𝑌 = 𝑦|𝑋 = 𝑥)𝑃𝜂(𝑋 = 𝑥), (9)

where

𝑃𝜂(𝑋 = 𝑥) =
𝑐(𝜂; 𝑥)
𝑐(𝜂; )

𝑥 ∈  . (10)

he first component of (9) can be viewed as an ERGM that is con-
itional on nodal attributes 𝑋 (Frank and Strauss, 1986; Hunter and
andcock, 2006):

𝑃𝜂(𝑌 = 𝑦|𝑋 = 𝑥)
1

𝑐(𝜂; (𝑥), 𝑥)
exp {𝜂 ⋅ 𝑔(𝑦, 𝑥)} 𝑦 ∈  (𝑥), (11)

where  (𝑥) = {𝑦 ∶ (𝑦, 𝑥) ∈  }. The second component 𝑃𝜂(𝑋 = 𝑥) is the
arginal distribution of the nodal variate 𝑋, which does not necessarily

elong to a non-trivial exponential family. The rewritten form (9)
llustrates the difference between ERNM and ERGM: the former models
he joint behavior of 𝑌 and 𝑋, whereas the latter models the conditional
istribution of 𝑌 given 𝑋.

In the ERGM (2), the graph statistics 𝑔(𝑦|𝑥), equivalent to 𝑔(𝑦, 𝑥)
n (11), model the network conditioning on the nodal attributes. In
ther words, the formation or dissolution of an individual’s social ties is
nfluenced by other individuals’ fixed nodal attributes. Hence, the nodal
ttributes are treated as exogenous to the model, and in many real
ituations, this assumption is inappropriate. On the contrary, ERNMs
se the network statistics 𝑔(𝑦, 𝑥), which brings more flexibility to the
odeling. Moreover, ERNMs take care of both nodal attributes and
yadic variables, different from ERGMs, which stochastically model the
ie variables only. As a consequence, ERNMs are conceptually able to
odel both the social selection and the social influence processes with

ndogenous nodal attributes. To further illustrate the two models under
he context of the two social processes, consider homophilous selection,
hich is measured by homophily terms in ERGM and ERNM:

ERGM homophily selection:

𝑃𝜂(𝑌 = 𝑦|𝑋 = 𝑥)
1

𝑐(𝜂; (𝑥), 𝑥)
exp {𝜂 ⋅ homophily(𝑦|𝑥)} 𝑦 ∈  (𝑥). (12)

ERNM Homophily selection:

𝑃𝜂(𝑌 = 𝑦,𝑋 = 𝑥)

𝑃𝜂(𝑌 = 𝑦|𝑋 = 𝑥)𝑃𝜂(𝑋 = 𝑥)
1

𝑐(𝜂; (𝑥), 𝑥)
exp {𝜂 ⋅ homophily(𝑦|𝑥)}

𝐸𝑌 [𝑃𝜂(𝑋 = 𝑥|𝑌 )] (𝑦, 𝑥) ∈  . (13)

Both ERGM and ERNM capture social selection. By controlling
or other alternative mechanisms, we can achieve a more accurate
omophilous selection result (Steglich et al., 2010). Because ERGM
reats the nodal attributes as exogenous, it does not represent any social
nfluences. ERNM is able to reflect the social influence at the same time
ince the nodal attributes are free to vary on the basis of the fixed
etwork structure:

𝜂(𝑌 = 𝑦,𝑋 = 𝑥) = 𝑃𝜂(𝑋 = 𝑥|𝑌 = 𝑦)𝑃𝜂(𝑌 = 𝑦)

𝜂(𝑋 = 𝑥|𝑌 = 𝑦) = 1 exp {𝜂 ⋅ 𝑔(𝑦, 𝑥)}, (14)

𝑐(𝜂; (𝑦), 𝑦)
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𝑥 ∈  (𝑦) (𝑦, 𝑥) ∈ 
here  (𝑦) = {𝑥 ∶ (𝑦, 𝑥) ∈  }. The term (14) represents the

ALAAM class (Robins et al., 2001b). This decomposition makes the
relationship between ALAAM and ERNM transparent. ALAAM is the
ERNM conditional over the network tie structure. So it is a special case
of ERNM.

The differences between ERNM and ERGM go beyond homophily
terms involving endogenous covariates. It applies to all terms in the
ERNM/ERGM (e.g., 𝑘-stars, degrees, GWESP, GWDSP). This is direct
for terms involving endogenous covariates but also indirectly via inter-
actions between model statistics. For example, the presence of direct
terms changes the interpretation and coefficients of the other terms in
the model.

It is essential to note that ERNM models the association between ties
and nodal attributes and is not a causal model. With cross-sectional
data and no causality specified, we cannot preclude social selection
from other mechanisms (Steglich et al., 2010). For example, if we
are trying to model the adolescent connections on smoking behavior,
the homophilous selection modeled on the smoking attribute may
preclude the transitivity or reciprocity processes. Other mechanisms,
like similarity in drinking behaviors, may also be masked. Although we
present a way to jointly model the social selection and social influence
processes in a cross-sectional context, in order to disentangle the two
processes, longitudinal data is needed (Leenders, 1997).

Any specific joint probability model for 𝑌 and 𝑋 can be represented
y a member of the ERNM family by the appropriate choice of network
tatistics. However, this is not anywhere as strong as it seems, as the
tatistics are unknown and could be of arbitrary complexity and num-
er. Because of this, there is a great need and opportunity for highly
tructured models that represent much of the complex structure of
he network in a relatively simple fashion. For example, Almquist and
utts (2014) introduces a vertex process temporal ERGM for modeling

oint edge and behavior dynamics but makes limiting assumptions so
hat the model is tractable. Fosdick and Hoff (2015) presents a latent
ariable model that contains both additive and multiplicative latent
ffects and is able to represent complex network structures, including
ithin-dyad correlation. This model can be motivated by the concept
f an underlying social space with the model a reduced dimension
epresentation of the network structure (Hoff, 2005). It jointly models
odal covariates and ties variables via this latent space. Like the ERNM,
t requires careful specification of the latent and manifest variable
tructure. Weng (2020) develop a separable model for the tie variables
nd endogenous covariates and introduce individual-specific random
ffects to represent individual unobserved heterogeneity influencing
oth network formation and the covariates. These models make quite
ifferent assumptions than ERNM, and a comparison would need to be
n-depth and application specific.

. Case-study indicating the need for ERNM over ERGM

.1. Introduction to the adolescent health data

Much network data on school friendships were collected by the
ational Longitudinal Study of Adolescent Health (Harris et al., 2007)

Add Health). This nationally representative study includes a longitu-
inal sample of more than 20,000 adolescents in grades 7 to 12 who
ere surveyed with in-school questionnaires in the US in 1994 and
995. Their smoking behaviors are recorded by asking whether they
ave ever smoked at least once. In our study, we used four networks of
rades 9 to 12 (Clark and Handcock, 2022). The smoking behavior is
oded as a binary variable, where 1 was used for students who reported
hat they have ever smoked at least once and 0 otherwise.

Students were asked to nominate up to 5 other students who were
heir best female friends and also up to 5 other students who were their

est male friends. We build the network of weak friendship ties, that is,
Table 1
Network summary.

Network summary

Nodes Edges Non-smoker Smoker Smoking ratio

Grade 9 256 617 168 88 0.3438
Grade 10 228 498 138 90 0.3947
Grade 11 192 416 118 74 0.3854
Grade 12 193 413 101 92 0.4767

an undirected tie if either student nominated the other. A visualization
of the networks is shown in Fig. 3. The edges are undirected, as a
connection between nodes A and B may represent A nominated B, B
nominated A, or both. Table 1 shows the summary of each network. It
is clear that the higher the grade, the greater the proportion of smoking
adolescents, which is to be expected.

We are specifically interested in smoking behavior, especially its
interconnection to the network structure. Unlike other measurements
like sex, age, and race that are exogenous to the network, smoking
behavior may be influenced by social connections and is expected to
be endogenous.

5.2. Models

We fitted the same model terms for both ERGM and ERNM. The
computational aspects are discussed in Section 5.3. In the nomenclature
of that section, these are:

• ERGM: 𝙽𝚎𝚝𝚠𝚘𝚛𝚔 ∼ 𝚎𝚍𝚐𝚎𝚜 + 𝙴𝚂𝙿(𝟶, 𝟷, 𝟸)
+𝙶𝚆𝙴𝚂𝙿(𝟶.𝟻) +𝙶𝚆𝙳𝚎𝚐𝚛𝚎𝚎(𝟶.𝟻)
+𝚗𝚘𝚍𝚎𝚏𝚊𝚌𝚝𝚘𝚛(𝚜𝚖𝚘𝚔𝚎)
+𝚗𝚘𝚍𝚎𝚖𝚊𝚝𝚌𝚑(𝚜𝚖𝚘𝚔𝚎)

• ERNM: 𝙽𝚎𝚝𝚠𝚘𝚛𝚔 ∼ 𝚎𝚍𝚐𝚎𝚜 + 𝙴𝚂𝙿(𝟶, 𝟷, 𝟸)
+𝙶𝚆𝙴𝚂𝙿(𝟶.𝟻) +𝙶𝚆𝙳𝚎𝚐𝚛𝚎𝚎(𝟶.𝟻)
+𝚗𝚘𝚍𝚎𝚏𝚊𝚌𝚝𝚘𝚛(𝚜𝚖𝚘𝚔𝚎)
+𝚗𝚘𝚍𝚎𝚖𝚊𝚝𝚌𝚑(𝚜𝚖𝚘𝚔𝚎) ∣ 𝚜𝚖𝚘𝚔𝚎

or grade 12, only ESP(0) is used. In the first analysis, all the statistics
ncluded in ERGM and ERNM are the same. What causes the difference
etween the two models is that ERNM treats the smoke indicator
ariable as stochastic, whereas ERGM treats it as fixed. Because of this
eature of ERNM, we can, and do, fit another model to ERNM by adding
he node count of smokers statistic to the first model:

• ERNM-Count: 𝙽𝚎𝚝𝚠𝚘𝚛𝚔 ∼ 𝚎𝚍𝚐𝚎𝚜 + 𝙴𝚂𝙿(𝟶, 𝟷, 𝟸)
+𝙶𝚆𝙴𝚂𝙿(𝟶.𝟻) +𝙶𝚆𝙳𝚎𝚐𝚛𝚎𝚎(𝟶.𝟻)
+𝚗𝚘𝚍𝚎𝚏𝚊𝚌𝚝𝚘𝚛(𝚜𝚖𝚘𝚔𝚎) + 𝚗𝚘𝚍𝚎𝚖𝚊𝚝𝚌𝚑(𝚜𝚖𝚘𝚔𝚎)
+𝚗𝚘𝚍𝚎𝚌𝚘𝚞𝚗𝚝(𝚜𝚖𝚘𝚔𝚎) ∣ 𝚜𝚖𝚘𝚔𝚎

The edges term represents the overall density of the network. The
SP term models the lower end of the shared partner distribution. The
WESP term with decay parameter 0.5 is a much more robust measure
f transitivity than triangles (as discussed in Section 3.1). The node-
actor term counts the number of times a node appears in an edge

or each value of the attribute. GWDegree stands for geometrically
eighted degree distribution, specifically representing some aspects of

he degree distribution (Morris et al., 2008). The nodematch term
n smoking behavior measures the number of edges with the same
moking behaviors on two ends. In other words, it counts the edge (𝑖−𝑗)
hen 𝑖 and 𝑗 are both smokers or non-smokers. Note that this model is

aturated on smoking based mixing behavior (Handcock et al., 2021).
he node count of smokers counts the number of smokers and this is
pecifically for ERNM because the number of smokers is invariant in
RGM.
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Fig. 3. Addhealth network visualization.
5.3. Computational aspects

All models in this paper are fit with the open-source user-friendly
R packages ergm (Handcock et al., 2021) or ernm (Fellows, 2014;
R Development Core Team, 2022). The easy availability of powerful,
sophisticated community supported software allows broad accessibility
of both these modeling classes for researchers. In particular, the ergm
package is a part of the statnet community of packages (Krivitsky
et al., 2003–2020). Together these allow robust MCMC based max-
imum likelihood estimation of ERGM and ERNM model parameters.
In addition, they offer powerful models and computational diagnostic
tools that we applied here and are available to all. We do not focus on
these computational aspects here but refer the reader to the extensive
material in the references.

As we discussed earlier in Section 3.2, due to the intricate de-
pendence feature of ERGM and ERNM, computation of approximate
maximum likelihood estimates of the parameters may be complicated
by model degeneracy. MCMC diagnostics are needed to check the ap-
propriation of the model, in other words, whether the model converges.
From the results of MCMC diagnostics (Appendix A.2), the trace plots
of simulated statistics from the fitted model indicate low dependency
and Markov chains convergent to the stationary distribution for both

ERGM and ERNM. The MCMC samplers mix well.
5.4. ERGM and ERNM fits

We show the results of ERGM fit under the suggested model of four
networks (corresponding to grades 9, 10, 11, and 12) in Table 2. We can
interpret the coefficients using the log-odds definition in Section 2.3.
The combination of Edges, Diff-homophily-smoke and Homophily-non-
smoker represents the propensity for forming a tie between all the
possible combinations of smoking attributes between paring of nodes.
The baseline (Edges) corresponds to a heterogeneous pairing. The
Homophily-non-smoke term represents the homophily for non-smokers.
All networks exhibit a positive estimated coefficient on the homophily
of non-smokers (although Grade 11 is not significant). To interpret
this result, taking Grade 9 as an example, the positive coefficient
estimate of homophily on non-smoking (0.40) suggests that students
who have not smoked are more likely to nominate as friends others who
have not smoked (all else held constant). The Diff-homophily-smoke
coefficients give us the differential homophily for smokers. In other
words, it represents the excess (or differential) homophily for smokers
over that for non-smokers. Summing the Homophily-non-smoker and
Diff-homophily-smoke coefficients give us the homophily for smokers.
All networks exhibit stronger homophily for smokers (although Grade

12 is only marginally significant). To interpret this result, taking Grade
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Table 2
Summary of the fit of the ERGM in Section 5.2 on four grades.

Coefficient ERGM

Grade 9 Grade 10 Grade 11 Grade 12

Edges −8.97(2.99)∗∗ −19.55(3.06)∗∗∗ 9.04(3.16)∗∗ −6.73(0.28)∗∗∗
ESP-0 3.35(2.99) 14.01(3.05)∗∗∗ 3.87(3.15) 1.21(0.23)∗∗∗
ESP-1 0.67(1.11) 4.77(1.17)∗∗∗ 0.81(1.18) NA
ESP-2 −0.23(0.40) 1.38(0.45)∗∗ −0.05(0.43) NA
GWESP 3.85(1.88)∗ 10.44(1.89)∗∗∗ 4.06(1.97) . 2.40(0.18)∗∗∗
GWDegree 2.98(0.48)∗∗∗ 1.58(0.32)∗∗∗ 1.66(0.35)∗∗∗ 1.73(0.33)∗∗∗
Diff-homophily-smoke 0.10(0.02)∗∗∗ 0.06(0.01)∗∗∗ 0.10(0.03)∗∗∗ 0.06(0.03) .
Homophily-non-smoker 0.39(0.06)∗∗∗ 0.40(0.06)∗∗∗ 0.12(0.08) 0.33(0.08)∗∗∗

Homophily-non-smoker is the number of ties between nodes with the same smoker activity;
Diff-homophily-smoke is the number of ties incident on a non-smoking node;
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, . p < 0.1.
Table 3
Summary of the fit of the ERNM in Section 5.2 on four grades.

ERNM

Grade 9 Grade 10 Grade 11 Grade 12

Edges −7.95(2.95)∗∗∗ −19.36(3.12)∗∗∗ −9.54(3.19)∗∗∗ −6.82(0.27)∗∗∗
ESP-0 2.23(2.94) 13.79(3.12)∗∗∗ 4.24(3.18) 1.24(0.24)∗∗∗
ESP-1 0.28(1.10) 4.69(1.20)∗∗∗ 0.94(1.20) NA
ESP-2 −0.33(0.40) 1.36(0.47)∗∗∗ −0.01(0.45) NA
GWESP 3.12(1.85)∗ 10.30(1.93)∗∗∗ 4.30(1.99)∗∗ 2.42(0.18)∗∗∗
GWDegree 3.05(0.48)∗∗∗ 1.59(0.33)∗∗∗ 1.63(0.35)∗∗∗ 1.68(0.33)∗∗∗
Diff-homophily-smoke 0.01(0.03) 0.02(0.03) −0.01(0.04) 0.00(0.04)
Homophily-non-smoker 0.37(0.08)∗∗∗ 0.40(0.08)∗∗∗ 0.14(0.11) 0.35(0.09)∗∗∗

Homophily-non-smoker is the number of ties between nodes with the same smoker activity;
Diff-homophily-smoke is the number of ties incident on a non-smoking node;
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, . p < 0.1.
Table 4
Summary of the fit of the ERNM including the count of the number of smokers on four grades (Section 5.2).

ERNM-Count

Grade 9 Grade 10 Grade 11 Grade 12

Edges −8.80(2.95)∗∗∗ −19.56(3.12)∗∗∗ −8.97(3.22)∗∗∗ −6.73(0.28)∗∗∗
ESP-0 3.18(2.94) 14.02(3.11)∗∗∗ 3.80(3.20) 1.21(0.24)∗∗∗
ESP-1 0.62(1.10) 4.77(1.19)∗∗∗ 0.78(1.21) NA
ESP-2 −0.24(0.40) 1.38(0.47)∗∗∗ −0.05(0.45) NA
GWESP 3.73(1.85)∗∗ 10.45(1.93)∗∗∗ 4.02(2.01)∗∗ 2.40(0.18)∗∗∗
GWDegree 2.97(0.47)∗∗∗ 1.58(0.32)∗∗∗ 1.66(0.35)∗∗∗ 1.72(0.34)∗∗∗
Diff-homophily-smoke 0.10(0.03)∗∗∗ 0.06(0.03)∗∗ 0.10(0.05)∗∗ 0.06(0.05)
Homophily-non-smoker 0.39(0.08)∗∗∗ 0.40(0.08)∗∗∗ 0.11(0.11) 0.34(0.09)∗∗∗
Nodecount-smoker −0.62(0.20)∗∗∗ -0.45(0.18)∗∗ −0.85(0.25)∗∗∗ −0.42(0.24)∗

Homophily-non-smoker is the number of ties between nodes with the same smoker activity;
Diff-homophily-smoke is the number of ties incident on a non-smoking node;
Nodecount-smoker is the number of students that report smoker activity;
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, . p < 0.1.
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as an example, this indicates that the homophily for smokers is more
han that for non-smokers by about 0.10 on the log-odds scale, and
ll else held constant. In other words, friendship formed between two
mokers is more likely than a friendship formed between two non-
mokers. The result of the two terms is evidence that the homophilies
etween smokers and between non-smokers are both stronger than the
eterogamy of smokers. In other words, non-smokers are less likely
o make friends with smokers (or vice versa), all other aspects held
onstant. Moreover, the model indicates that the homophily of smokers
s generally higher than the homophily of non-smokers.

The GWESP and ESP terms together model the edgewise shared
artner distribution and represent the transitivity in the network (not
epresented by the other terms, especially the homophily terms). The
hree ESP terms account for the number of pairs of nodes having 0,
, and 2 alter in common. The adjustment for any deviation in the
ower end of the edgewise shared partner distribution for the additional
ransitivity implied by the GWESP term. We see that the total effects of
hese terms are positive and significant in all but the Grade 11 network.
his indicates that there is generally transitivity above and beyond that
mplied by the level of homophily in the network. s
From the ERGM fit, we conclude that the social connections of 9
o 12-grade adolescents generally show a tendency for transitivity. The
omophily of non-smokers and smokers are both positive, with that of
mokers higher than non-smokers. Adolescents with different smoking
ehaviors are less likely to make friends with each other.

.4.1. ERNM fit for the same terms as the ERGM
We fitted the same networks with ERNM with the same terms,

nd the results are shown in Table 3. As we discussed earlier, the
ualitative interpretation of graph statistics of the ERNM is comparable
o that of the comparable ERGM. The dyadic variables of ERNM can
e interpreted under the conditional logistic regression as we show in
ection 2.3. The parameter estimations of the basic terms (Edges, ESP,
WESP, and GWDegree) of ERNM are similar to those of the ERGM

it for each of the four networks. The Homophily-non-smoker term is
lso very similar to the ERGM coefficient. The estimated coefficients
f homophily on non-smokers are positive and significant in all four
etworks (except Grade 11). The standard errors are on the same

cale as the ERGM (around 0.1). To interpret the coefficients, take
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Grade 9 as an example: the log-odds of a homogeneous tie of a non-
smoker (that is a tie between non-smoker and non-smoker) versus a
heterogeneous tie (that is a tie between a non-smoker and a smoker)
is 0.4 higher, holding all else fixed. This suggests that there is a
higher statistically significant probability of a tie between two smokers
than a tie between one smoker and one non-smoker (holding all else
constant). This coincides with the conclusion of ERGM. What stands
out is the difference between the homophilies for smokers and non-
smokers (that is, the Diff-homophily-smoke term). Unlike ERGM, which
has statistically significantly higher homophily for smokers compared
to non-smokers, ERNM has coefficients of homophily of smokers very
close to homophily of non-smokers, which suggests uniform homophily.
The difference in homophily on smoking is close to zero for each grade.
This suggests that there is no big difference in the tendency to make
friends between non-smokers and non-smokers compared to smokers
and smokers. We will discuss this result in detail in the next section as
it sheds light on the difference between the two models.

5.4.2. ERNM fit when a count of the number of smokers is included
Another ERNM (ERNM-Count) is fitted by adding the node count

of the smoke term to the first model, and the results are shown in
Table 4. Note that this is equivalent to the model counting the number
of non-smokers as the total number of nodes/students is fixed for each
grade/network.

Note that the coefficients of all terms except the added term are
very close to those in the ERGM of Table 2 (which excludes the smoker
count term). The reason for this is a geometric feature of exponential
family models. Consider conditioning on the number of smokers in the
ERNM-Count model:

𝑃𝜂(𝑌 = 𝑦,𝑋 = 𝑥) = 1
𝑐(𝜂)

exp {𝜂 ⋅ g(𝑦, 𝑥) + 𝜂𝑐𝑛𝑠𝑚𝑜𝑘𝑒𝑟𝑠(𝑥)}

𝑃𝜂(𝑛𝑠𝑚𝑜𝑘𝑒𝑟𝑠(𝑋) = 𝑛𝑠𝑚𝑜𝑘𝑒𝑟𝑠) =
𝑐(𝜂; 𝑛𝑠𝑚𝑜𝑘𝑒𝑟𝑠)

𝑐(𝜂)

𝑃𝜂(𝑌 = 𝑦,𝑋 = 𝑥|𝑛𝑠𝑚𝑜𝑘𝑒𝑟𝑠(𝑋) = 𝑛𝑠𝑚𝑜𝑘𝑒𝑟𝑠)

= 1
𝑐(𝜂; 𝑛𝑠𝑚𝑜𝑘𝑒𝑟𝑠)

exp {𝜂 ⋅ g(𝑦, 𝑥; 𝑛𝑠𝑚𝑜𝑘𝑒𝑟𝑠)} (15)

he Eq. (15) represents the exponential family form of the ERNM-Count
odel. By specifying the number of smokers, it acts as if conditioning

n the nodal attributes 𝑋 representing the smoking behavior. Recall the
unctional form of ERGM (2), and we would expect the parameter es-
imates 𝜂 of ERGM and ERNM-Count relating to homophilous smoking
o be close.

As Table 4 shows, the majority of the results from four networks
re consistent with the previous two models, except for the homophily
erms. In particular, we observe differential homophily on smoking
n ERNM-Count (that is the statistically significant positive estimated
oefficients of Diff-homophily-smoker term). A positive coefficient sug-
ests that the homophily of smokers is more than the homophily of
on-smokers. The Nodecount-smoker term is significant (or marginally
ignificant in Grade 12) with negative coefficient estimates. Taking
rade 9 as an example, we see that the log-odds of a student being
smoker is −0.62, holding the rest constant. This suggests that there

re fewer smokers than expected based on the social structure of the
riendship ties.

Comparing the two models of ERNM, the discrepancy in homophily
easures gives an illuminating finding. Without the node count on

mokers, we find uniform homophily between smokers and non-
mokers. However, after taking into account the node count of smokers,
he homophily of smokers is driven up, for example, 0.38 to 0.49 in
rade 9, which indicates that the homophily of smokers is more than

he homophily of non-smokers. And the conditional log-odds of a tie for
smoker who chooses a smoker is 0.09 higher after adding the node
ount of the smoker.
.5. Assessing goodness of fit

It is necessary to check the goodness of fit (GOF) of fitted models
o verify the rationality of the model. Hunter et al. (2008) introduced
procedure for goodness of fit, which generates simulations on target
etwork statistics and compares them to the observed graph statistics.

The construction of the tests is as follows: for both ERGM and
RNM, we generate 1000 simulations from the fitted models and
ompare their simulated distributions to the observed statistics. The
OF plot (Appendix A.2) consists of statistics that are included in the
odel and statistics (Degree(0:20), ESP(3:10)) that are not included in

he model. We provide side-by-side box plots, including the statistics
entioned above, in order to compare the models without the node

ount term fitted by ERNM and ERGM. We also compare the model
ith the node count of the smoker fitted by ERNM and without the
ode count model fitted by ERGM. Both ERGM and ERNM simulate
istribution aligning closely to the observed statistics, which is under
xpectation. Although there are some deviations in the degree distri-
ution, it does an adequate job, as no degree terms are included in
he model. The comparison of the count of smokers and non-smokers
etween ERNM and ERNM-Count is shown in Fig. 4. The model which
ets the number of smokers relative to the observed social structure
ERNM) thinks there should typically be more smokers than observed,
hereas ERNM-Count suggests that we actually have fewer smokers

han suggested by the ERNM model (and consistent with the observed
umber).

In addition we introduce an alternative Goodness of Fit measure:
he Kullback–Leibler (KL) divergence (relative entropy), which is a
tatistical distance that accounts for how one probability distribution P
s different from the second probability distribution Q (MacKay, 2002).
t is denoted as

KL(𝑃 ∥ 𝑄) =
∑

𝑥∈
𝑃 (𝑥) log

(

𝑃 (𝑥)
𝑄(𝑥)

)

.

In our analysis, we are interested in the relative entropies from ERNM-
Count to ERNM and from ERNM-Count to ERGM to demonstrate the
fitting of the three models. Although the sample spaces of the ERGM
and the ERNM are different, we can analyze the relative entropy of the
conditional probability of network statistics in the model. Using the
previously generated 1000 simulations of fitted models, we compute
the estimate of the KL divergence using the univariate Gaussian approx-
imation. We also used the bias-corrected (basic) bootstrap to produce
estimates of the divergences and their standard errors (using 5000
resamplings). The bias-corrected means and standard errors are shown
in Tables 5 and 6. The Kullback–Leibler divergence can be interpreted
as the expected log-likelihood ratio for rejecting the hypothesis that
the variable was drawn from ERNM-Count based on a single network.
The interpretation of Table 5 is the expected excess surprise from using
ERGM as a model when the actual distribution is ERNM-Count. The
results for ERGM show that the impact on some statistics is small (most
GWDegree, Homophily-non-smoker terms). However, there are large
impacts on most Edges, Diff-homophily-smoke terms, and the GWESP
terms, indicating that the ERGM provides a poor fit for key structural
terms in the model. Note that the ERGM misspecifies the number of
smokers as a constant, while the standard deviation of the number of
smokers is 6.9 (Fig. 4). We see in Table 6 that the lack-of-fit for the
ERNM model is small, especially relative to the ERGM.

6. Discussion

Despite the wide success of exponential-family random graph mod-
els in representing complex network data, they treat the nodal and
dyadic covariates as exogenous. This is not true for many realistic
social processes. In this paper, we show that this treatment misspecifies
the social structure of network processes. We also provide evidence

that Exponential-family random network models represent a much



Z. Wang et al.
Fig. 4. Comparison between two ERNMs of count of smokers and non-smokers.
Table 5
KL divergence of ERNM-Count to ERGM.

𝐷𝐾𝐿(ERNMCount ∥ ERGM)

Grade 9 Grade 10 Grade 11 Grade 12

Edges 0.152(0.030) 0.337(0.045) 0.008(0.005) 0.003(0.002)
ESP-0 0.005(0.003) 0.006(0.004) 0.006(0.004) 0.020(0.008)
ESP-1 0.012(0.006) 0.022(0.009) 0.004(0.003) 0.005(0.003)
ESP-2 0.003(0.002) 0.003(0.002) 0.009(0.005) 0.011(0.006)
GWESP 0.168(0.033) 0.352(0.044) 0.016(0.007) 0.013(0.006)
GWDegree 0.003(0.002) 0.013(0.007) 0.009(0.006) 0.005(0.003)
Diff-homophily-smoke 0.391(0.061) 0.837(0.086) 0.062(0.018) 2.064(0.223)
Homophily-non-smoker 0.005(0.004) 0.013(0.007) 0.008(0.005) 0.009(0.005)

The entries are the Kullback–Leibler divergences between the ERGM distribution of each
variable from the corresponding ERNM-Count distribution. The values in parentheses
are the standard errors of those values (computed via the bootstrap).

better class of models for representing processes with nodal and dyadic
covariates that are endogenous to the tie variables. ERNMs have many
advantages. First, they are also in the exponential-family class of mod-
els, which have been shown to be able to represent complex social
structures. Exponential-family classes of models have been extensively
studied, and their properties have been explored. Because of this, the
extensive knowledge and software platforms that have been developed
for ERGM can, and have been, extended to ERNM.
Table 6
KL Divergence of ERNM-Count to ERNM.

𝐷𝐾𝐿(ERNMCount ∥ ERNM)

Grade 9 Grade 10 Grade 11 Grade 12

Edges 0.026(0.010) 0.019(0.009) 0.009(0.005) 0.003(0.002)
ESP-0 0.003(0.002) 0.004(0.003) 0.007(0.004) 0.009(0.005)
ESP-1 0.004(0.003) 0.017(0.008) 0.017(0.008) 0.012(0.006)
ESP-2 0.006(0.004) 0.004(0.003) 0.004(0.003) 0.011(0.006)
GWESP 0.022(0.010) 0.023(0.010) 0.010(0.006) 0.005(0.004)
GWDegree 0.003(0.003) 0.010(0.006) 0.003(0.002) 0.003(0.002)
Diff-homophily-smoke 0.039(0.014) 0.079(0.017) 0.055(0.014) 0.310(0.035)
Homophily-non-smoker 0.004(0.003) 0.006(0.004) 0.009(0.006) 0.006(0.004)

The entries are the Kullback–Leibler divergences between the ERNM distribution of each
variable from the corresponding ERNM-Count distribution. The values in parentheses
are the standard errors of those values (computed via the bootstrap).

In this paper, we compare ERGM and ERNM, with a special interest
in situations where at least some of the covariates are stochastic. We use
as a case-study: a friendship network among students within a school
from the National Longitudinal Study of Adolescent Health. Within
this network, the student’s smoking behavior is likely endogenous to
their friendship ties. Both ERNM and ERGM models represent the
four friendship networks well, as evidenced by the goodness-of-fit and
MCMC diagnostics. The coefficient estimates, and interpretations of the
ERGM and ERNM are very similar after adding the node count term
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into ERNM (Tables 2 and 4). Although both models show significant
differential homophilies on smoke, the node count term on smoke
is a notable addition to the ERNM fitting. Combining the result of
ERNM and ERNM-Count model, we find there are fewer smokers in
the network than expected due to chance: the simulation results of
the ERNM model gives a higher number of smokers compared to the
observed statistics and the ERNM-Count (Fig. 4) simulated statistics;
The negative coefficient of the node count variable in the ERNM-
Count model also suggests this. It illustrates the importance of treating
smoking status as endogenous, rather than exogenous, as in ERGM.

The impact of the endogeneity is throughout the model. As the case
study shows, primary properties, such as the presence of differential
homophily, can be misspecified by ERGM. Coefficients can be both
under and overestimated by ERGM and standard errors can be affected
both ways. In our case-study, this can be seen by comparing the
coefficients and standard errors in Table 2 (ERGM) to those in Table 3
(ERNM).

The findings from the ERGM and ERNM are fundamentally different:
Either the smokers have similar homophily to non-smokers (Table 4), or
the number of smokers is lower than we would expect (Table 4). This
is missed by the ERGM and clear (and statistically significant) in the
ERNM. Note that the ERGM model is conceptually wrong in this case
as it is a pure social selection model where ERNM allows both social
selection and social influence.

On the one hand, based on the result of ERNM and ERGM, this is
consistent with a process of social selection. Smokers tend to connect
with smokers, and non-smokers tend to connect with non-smokers. If
this argument holds empirically, then this would be a selection causal
mechanism that leads to it. However, there might be other tie formation
processes, such as different social contexts (Feld, 1981). Take a simple
example: since smoker A and smoker B go to the same tobacco shop,
they meet there a lot of times and become friends. This cannot be seen
as a causal relationship of the homophily, rather, it is the social context
that leads to the formation of friendship. Hence, we can conclude an
association between nodal attributes and social networks instead of
causality. On the other hand, AddHealth networks can be explained
by the process of social influence. Given the result of ERNM-Count,
smokers who are connected with non-smokers may choose to quit
smoking and become non-smokers. If this holds, then this would be an
influence causal mechanism that leads to it, which is a mechanism that
only involves influence. Steglich et al. (2010) has tested the existence of
such a mechanism. However, it may also be possible that smokers quit
smoking because they want to make connections with non-smokers.
Hence, the tie formation is a homophily or social selection process.
Although we cannot disentangle the social selection and influence
mechanisms, based on our conceptual knowledge, we tend to believe
that the social influence process is less credible under this context, and
it is much more likely that it is the selection mechanism that dominates.

The availability of powerful user-friendly open-source software al-
lows broad accessibility and use of both ERGM and ERNM (Krivitsky
et al., 2003–2020; Fellows, 2014). The analysis in this paper supports
the notion that ERNM is preferred when networks have stochastic
covariates.

Finally, we note the ERNM provides a way to specify the complex
dependency structures that would empower autologistic actor attribute
models (ALAAM) (Robins et al., 2001b). This connection to ALAAM will
be the topic of future investigation.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.socnet.2023.07.003. In this supplementary,
we provide some derivation results for Section 2.3. We also show the
goodness-of-fit plots and MCMC diagnostics results for both the ERGM
and ERNM fits to the adolescent health network data.
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