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ABSTRACT

This paper examines several multimodel combination techniques that are used for streamflow forecasting:
the simple model average (SMA), the multimodel superensemble (MMSE), modified multimodel super-
ensemble (M3SE), and the weighted average method (WAM). These model combination techniques were
evaluated using the results from the Distributed Model Intercomparison Project (DMIP), an international
project sponsored by the National Weather Service (NWS) Office of Hydrologic Development (OHD). All
of the multimodel combination results were obtained using uncalibrated DMIP model simulations and were
compared against the best-uncalibrated as well as the best-calibrated individual model results. The purpose
of this study is to understand how different combination techniques affect the accuracy levels of the
multimodel simulations. This study revealed that the multimodel simulations obtained from uncalibrated
single-model simulations are generally better than any single-member model simulations, even the best-
calibrated single-model simulations. Furthermore, more sophisticated multimodel combination techniques
that incorporated bias correction step work better than simple multimodel average simulations or multi-
model simulations without bias correction.

1. Introduction

Many hydrologists have been working to develop
new hydrologic models or to try improving the existing
ones. Consequently, a plethora of hydrologic models
are in existence today, with many more likely to emerge
in the future (Singh 1995; Singh and Frevert 2002a,b).
With the advancement of the geographic information
system (GIS), a class of models, known as distributed
hydrologic models, has become popular (Russo et al.
1994; Vieux 2001; Ajami et al. 2004). These models
explicitly account for spatial variations in topography,
meteorological inputs, and water movement.

The National Weather Service Hydrology Labora-

tory (NWS-HL) has recently conducted the Distributed
Model Intercomparison Project (DMIP; http://www.
nws.noaa.gov/oh/hrl/dmip), which showcased state-of-
the-art distributed hydrologic models from different
modeling groups (Smith et al. 2004). It was found that
there is a large disparity in the performance of the
DMIP models (Reed et al. 2004). The more interesting
findings were that multimodel ensemble averages per-
form better than any single-model simulations, includ-
ing the best-calibrated single-model simulations, and
the multimodel ensemble averages are more skillful
and reliable than the single-model ensemble averages
(Georgakakos et al. 2004). Georgakakos et al. (2004)
attributed the superior skill of the multimodel en-
sembles to the fact that model structural uncertainty is
accounted for in the multimodel approach. They went
on to suggest that multimodel ensemble simulations
should be considered as an operational forecasting tool.
The fact that the simple multimodel averaging ap-
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proach such as the one used by Georgakakos et al.
(2004) has led to more skillful and reliable simulations
motivated us to examine whether more sophisticated
multimodel combination techniques can result in con-
sensus simulations of even better skill.

Most hydrologists are used to the traditional contruc-
tionist approach, in which the goal of the modeler is to
build a perfect model that can capture the real world
processes as much as possible. The evolution of simple
conceptual models to more physically based distributed
models is a manifestation of this approach. The multi-
model combination approach, on the other hand, works
in essentially a different paradigm in which the modeler
aims to extract as much information as possible from
the existing models. The rationale behind multimodel
combination lies in the fact that predictions from indi-
vidual models invariably contain errors from various
sources, including model input data, model state and
parameter estimation, and model structural deficiencies
(Beven and Freer 2001). With independently con-
structed models, these errors tend to be mutually inde-
pendent in statistical property. Through model averag-
ing, these errors would act to cancel each other out,
resulting in better overall predictions.

The idea of combining predictions from multiple
models was explored more than 30 years ago in econo-
metrics and statistics (see Bates and Granger 1969;
Dickinson 1973, 1975; Newbold and Granger 1974).
Thompson (1976) applied the model combination con-
cept in weather forecasting. He showed that the mean
square error of forecasts generated by combining two
independent model outputs is less than that of the in-
dividual predictions. Based on the study done by
Clemen (1989), the concept of the combination fore-
casts from different models were applied in diverse
fields ranging from management to weather prediction.
Fraedrich and Smith (1989) presented a linear regres-
sion technique to combine two statistical forecast meth-
ods for long-range forecasting of the monthly tropical
Pacific sea surface temperatures (SSTs). Krishnamurti
et al. (1999) explored the model combination technique
by using a number of forecasts from a selection of dif-
ferent weather and climate models. They called their
technique multimodel superensemble (MMSE) and
compared it to the simple model average (SMA)
method. Krishnamurti and his group applied the
MMSE technique to forecast various weather and cli-
matological variables (e.g., precipitation, tropical cy-
clones, seasonal climate) and all of these studies agreed
that consensus forecast outperforms any single-member
model as well as the SMA technique (e.g., Krishna-
murti et al. 1999, 2000a,b, 2001, 2002; Mayers et al.
2001; Yun et al. 2003). Kharin and Zwiers (2002) re-

ported that for small sample size data the MMSE does
not perform as well as simple ensemble mean or the
regression-improved ensemble mean.

Shamseldin et al. (1997) first applied the model com-
bination technique in the context of rainfall–runoff
modeling. They studied three methods of combining
model outputs, the SMA method, the weighted average
method (WAM), and the artificial neural network
(ANN) method. They applied these methods to com-
bine outputs of five rainfall–runoff models for 11 wa-
tersheds. For all these cases they reported that the
model combination simulation is superior to that of any
single-model simulations. Later Shamseldin and
O’Connor (1999) developed a real-time model output
combination method (RTMOCM), based on the syn-
thesis of the linear transfer function model (LTFM) and
the WAM and tested it using three rainfall–runoff
models on five watersheds. Their results indicated that
the combined streamflow forecasts produced by
RTMOCM were superior to those from the individual
rainfall–runoff models. Xiong et al. (2001) refined the
RTMOCM method by introducing the concept of Tak-
agi–Sugeno fuzzy system as a new combination tech-
nique. Abrahart and See (2002) compared six different
model combination techniques: the SMA; a probabilis-
tic method in which the best model from the last time
step is used to create the current forecast; two different
neural network operations; and two different soft com-
puting methodologies. They found that neural network
combination techniques perform the best for a stable
hydroclimate regime, while the fuzzy probabilistic
mechanism generates superior outputs for a more vola-
tile environment (flashier catchments with extreme
events). Butts et al. (2004a,b) proposed a framework
that allowed a variety of alternative distributed hydro-
logical models (model structures) to be used to gener-
ate multimodel ensembles. They found exploring dif-
ferent model structures and using SMA or WMA mul-
timodel combinations very beneficial as part of the
overall modeling approach for operational hydrological
prediction since it decreases model structural uncer-
tainty.

This paper extends the work of Georgakakos et al.
(2004) and Shamseldin et al. (1997) by examining sev-
eral multimodel combination techniques, including
SMA, MMSE, WAM, and modified multimodel aver-
age (M3SE) a variant of MMSE. As in Georgakakos et
al. (2004), we will use the simulation results from the
DMIP to evaluate various multimodel combination
techniques. Through this study, we would like to an-
swer this basic question, “Does it matter which multi-
model combination techniques are used to obtain con-
sensus simulation?” We will also investigate how the
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accuracy of the multimodel simulations are influenced
by different factors, including 1) the seasonal variations
of hydrological processes, 2) number of independent
models considered, and 3) accuracy levels of individual
member models.

The paper is organized as follows: Section 2 over-
views different model combination techniques. Section
3 describes the data used in this study. Section 4 pre-
sents the results and analysis. Section 5 provides a sum-
mary of major lessons and conclusions.

2. A brief description of the multimodel
combination techniques

a. Simple model average

The SMA method is the multimodel ensemble tech-
nique used by Georgakakos et al. (2004). This is the
simplest technique and is used as a benchmark for
evaluating more sophisticated techniques in this work.
SMA can be expressed by the following equation:

�QSMA�t � Qobs � �
i�1

N
�Qsim�i,t � �Qsim�i

N
, �1�

where (QSMA)t is the multimodel streamflow simulation
obtained through SMA at time t, (Qsim)i,t is the ith
model streamflow simulation for time t, (Qsim)i is the
time average of the ith model streamflow simulation,
(Qobs) is the corresponding observed average stream-
flow, and N is the number of models under consider-
ation.

b. Weighted average method

WAM is one of the model combination techniques
specifically developed for rainfall–runoff modeling by
Shamseldin et al. (1997). This method utilizes the mul-
tiple linear regression (MLR) technique to combine the
model simulations. The model weights are constrained
to be always positive and to sum to unity. If we have
model simulations from N models, WAM can be ex-
pressed as

�QWAM�t � �
i�1

N

xi�Qsim�i,t �2�

S.t. � xi � 0

�xi � 1 i � 1 . . . N,

where (QWAM)t is the multimodel simulation obtained
through WAM at time t. Equation (2) presents a simple
multiple linear regression. The multiregression method

is a tool for exploiting linear tendencies that may exist
between dependent variable (here observed stream-
flow) and a set of independent variables (the simulated
streamflow by various models contributing in multi-
model ensemble). Shamseldin et al. (1997) used the
constrained least squares technique to solve this mul-
tiple linear regression equation and estimate the
weights. In the constrained least squares technique, the
weights are restrained to be positive and to sum to
unity. The available dataset is divided into two periods:
training and validation. Over the training period the
weights are estimated for the each model contributing
in the multimodel combination. Subsequently the esti-
mated weights are tested over the validation period.
For more details about this method the reader should
refer to Shamseldin et al. (1997).

c. Multimodel superensemble

The MMSE is a multimodel forecasting approach
popular in meteorological forecasting. Here we apply
this approach for hydrological forecasting. The MMSE
uses the following logic (Krishnamurti et al. 2000b):

�QMMSE�t � Qobs � �
i�1

N

xi��Qsim�i,t � �Qsim�i�, �3�

where (QMMSE)t is the multimodel streamflow simula-
tion obtained through MMSE at time t, and {xi, i � 1,
2, . . . , N} are the regression coefficients (weights) com-
puted over the training period. The weights (regression
coefficients) are estimated through the unconstrained
least squares technique where they can be assigned to
any real numbers. As in the WAM multimodel combi-
nation technique, weights are estimated over the train-
ing period and validated over the forecast period.

Equation (3) comprises two main terms. The first
term, (Qobs), which replaces the MMSE simulation av-
erage streamflow with the observed average stream-
flow, serves to reduce the forecast bias. The second
term, �xi[(Qsim)i,t � (Qsim)i], reduces the variance of
the combination of simulations using multiple regres-
sions. Therefore, the logic behind this methodology is a
simple idea of bias correction along with variance re-
duction. We also note that when a multimodel combi-
nation technique such as MMSE is used to predict hy-
drologic variables like streamflow, it is important that
the average streamflow during the training period over
which the model weights are computed is close to the
average streamflow of the validation period (i.e., the
stationarity assumption). In section 4, we will show that
bias removal and stationarity assumption are important
factors in multimodel simulation accuracy.
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d. Modified multimodel superensemble

The M3SE technique is a variant of the MMSE. This
technique is similar to the MMSE except for the bias
correction step. In the MMSE, model bias is removed
by replacing the average of the simulations by the av-
erage of observed streamflow. In the M3SE, the bias is
removed during the training period by mapping the
model simulation at each time step to the observed
streamflow with the same frequency as the simulated
streamflow. The observed streamflow during the train-
ing period was also used later during the validation
period in order to remove bias from multimodel en-
semble flow simulations. Figure 1 illustrates how simu-
lated streamflow is mapped into observed streamflow
through frequency mapping. The solid arrow shows the
original value of the simulation and the dashed arrow
points to the corresponding observed value. For ex-
ample, in the frequency curve presented in Fig. 1, a
simulated streamflow value equal to 10 cms would map
to a frequency of 0.74. However, the frequency value of
0.74 in the observed frequency curve maps to a value of
20 cms. Therefore, 10 cms in the simulated time series
will be replaced by 20 cms, which was mapped from the
observed streamflow frequency curve.

The frequency mapping bias correction method has
been popular in hydrology because the bias-corrected
hydrologic variables agree well statistically with the ob-
servations, while the bias correction procedure used in
MMSE might lead to unrealistic values (i.e., negative
values). This will be discussed later in the paper. After
removing bias from each model forecast, the same so-
lution procedure for MMSE is applied to M3SE.

e. Differences between the four multimodel
combination techniques

The major differences between these multimodel
combination methods are the model weighting schemes
and the bias removal schemes. MMSE, M3SE, and
WAM have variable model weights, while SMA has
equal model weights. MMSE and M3SE compute the
model weights through multiple linear regressions
while WAM computes the model weights using a con-
strained least squares approach that ensures positive
model weights and total weights equal to 1. With re-
spect to bias correction, MMSE and SMA remove the
bias by replacing the simulation mean with the ob-
served mean, while WAM does not incorporate any
bias correction. M3SE removes the bias by using fre-
quency mapping method as illustrated in section 2d.

3. The study basins and data

We have chosen to evaluate the multimodel combi-
nation methods using model simulation outputs col-
lected from the DMIP (Smith et al. 2004). The DMIP
was conducted over several river basins within the Ar-
kansas–Red River basin. Five of the DMIP basins are
included in this study: Illinois River basin at Watts,
Oklahoma; Illinois River basin at Eldon, Oklahoma;
Illinois River basin at Tahlequah, Oklahoma; Blue
River basin at Blue, Oklahoma; and Elk River basin at
Tiff City, Missouri. Figure 2 shows the location of the
basins while Table 1 lists the basin topographic and
climate information. Silty clay is the dominant soil tex-
ture type of those basins, except for the Blue River,
where the dominant soil texture is clay. The land cover
of these basins is mostly dominated by broadleaf forest
and agriculture crops (Smith et al. 2004).

The average maximum and minimum surface air
temperature in the region are approximately 22° and
9°C, respectively. Summer maximum temperatures can
get as high as 38°C, and freezing temperatures occur
generally in December through February. The climato-
logical annual average precipitation of the five basins in
the region is between 1010 and 1160 mm yr�1 (Smith et
al. 2004).

Seven different modeling groups contributed to the
DMIP by producing hourly streamflow simulations for
the DMIP basins using their distributed models, driven
by meteorological forcing data provided by the NWS-
HL. The hourly precipitation data, available at 4 	 4
km2 spatial resolution, was generated from the NWS
Next-Generation Weather Radar (NEXRAD). Other
meteorological forcing data such as air temperature,
downward solar radiation, humidity, and wind speed

FIG. 1. Frequency curve that is being used for bias correction
for the M3SE method.
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were obtained from the University of Washington
(Maurer et al. 2001). Table 2 lists the participating
groups and models. For more details on model descrip-
tion and simulation results, readers should refer to
Reed et al. (2004).

For this study, we obtained the hourly streamflow
simulations from all participating models for the entire
DMIP study period: 1993–99. All the participating
models were run in hourly time steps. The uncalibrated
streamflow simulation results were used for multimodel
combination study. Hourly observed streamflow data,
along with the best-calibrated single-model streamflow
simulations from the DMIP, were used as the bench-
marks for comparing accuracy levels of the different
multimodel simulations. The data period from 1993 to
1996 was used to train the model weights, while the rest

of the data period (1997–99) was used for validating the
consistency of the multimodel simulations using these
weights.

4. Multimodel combination results and analysis

a. Model evaluation criteria

Before we present the results, it should be noted that
two different statistical criteria are used to compare the
results of this work: hourly root-mean-square error
(HRMS) and the Pearson correlation coefficient (R).
These two statistical criteria are commonly used in the
field of hydrology to compare accuracy of different
time series in matching observed variables (Hogue et
al. 2000; Ajami et al. 2004). These criteria are defined as
follows:

HRMS ���1
n �

t�1

n

��Qsim�t � �Qobs�t�
2� , �4�

R �

�
t�1

n

��Qobs�t�Qsim�t� � �nQobsQsim�

���
t�1

n

�Qobs�t
2 � n�Qobs�

2���
t�1

n

�Qsim�t
2 � n�Qsim�2�

, �5�

where n is the number of data points.

FIG. 2. DMIP test basins (Smith et al. 2004).
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b. Comparison of the multimodel consensus
predictions and the uncalibrated individual
model predictions

In the first set of numerical experiments, the multi-
model simulations were computed from the uncali-
brated individual model simulations using the different
multimodel combination techniques described in sec-
tion 2. Figures 3a–j present the scatterplots of the
HRMS versus R values of the individual model simu-
lations and those of the SMA simulations. The horizon-
tal axis in these figures denotes the Pearson coefficient
from the individual models and SMA, while the vertical
axis denotes HRMS of these simulations. Note that the
most desired accuracy value set in matching observed
streamflow is located at the lower-right corner of the
figures. Figures 3a, 3c, 3e, 3g, and 3i show the results for
the training period, while Figs. 3b, 3d, 3f, 3h, and 3j
show the results over validation period. These figures
clearly show that the statistics from the individual
model simulations are almost always worse than those
of the SMA simulations. These results confirm the fact
that just simply averaging the individual model simula-
tions would lead to improved accuracy levels, which is
consistent with the conclusions from the paper by
Georgakakos et al. (2004).

Figures 4a–j show the scatterplots of the HRMS and
R for all multimodel combination techniques as well as
for the best-uncalibrated and the best-calibrated indi-
vidual model simulations during the training and vali-
dation periods. Clearly shown in these figures is that all
multimodel simulations have superior performance sta-
tistics compared to the best-uncalibrated individual
model simulation (best-uncal). More interestingly, the
multimodel simulations generated by MMSE and
M3SE show noticeably better performance statistics
than those by SMA. This implies that there are benefits
in using more sophisticated multimodel combination
techniques. The simulations generated by WAM show
worse performance statistics than the simulations gen-
erated by other multimodel combination techniques.
This suggests that the bias removal step incorporated

by other multimodel combination techniques is impor-
tant in improving simulation accuracy especially during
the validation period. It was found that reducing the
variance solely improves the R and HRMS compared to
the best-performing uncalibrated member model be-
tween 3%–12% and 13%–30% over the training period
and 0%–3% and 8%–16% over the validation period,
respectively. Adding the bias removal step to the pro-
cedure improves the R and HRMS compared to the
combination methods with just variance reduction step
(WAM combination technique), between 2%–4% and
10%–16% over the training period and 0%–5% and
0%–10% over the validation period. These results high-
light two interesting observations. First, the bias re-
moval step improves the HRMS statistics more signifi-
cantly than R. The second observation is that the major
progress during model combination methods happens
over the variance reduction step, even though it is hard
to disregard the improvement gained during the bias
removal step. It is noteworthy that adding the bias re-
moval step to the multimodel combination technique
does not significantly increase the complexity and com-
putation time of the combination process. Figure 5 de-
picts an excerpt of streamflow simulation results from
M3SE and MMSE during the forecast period. The ad-
vantage of the bias removal technique in the M3SE
over that of the MMSE is indicated by the fact that
negative streamflow values were generated by the
MMSE for some parts of the hydrograph (over the low
flow periods) while the M3SE does not suffer from this
problem.

The advantage of multimodel simulations from the
training period carries into the validation period in al-
most all cases except for Blue River basin, where the
performance statistics of the multimodel simulations
are equal to or slightly worse than the best-uncalibrated
individual model simulation. The reason for the relative
poor performance in Blue River basin is that a notice-
able change in streamflow characteristics is observed
from the training period to the validation period (i.e.,
the average streamflow changes from 10.8 cms in the

TABLE 1. Basin information.

Basin name

U.S. Geological Survey
(USGS) gauge location

Area
(km2)

Annual
rainfall
(mm)

Annual
runoff
(mm)

Dominant
soil texture

Vegetation
coverLat Lon

Illinois River basin at Eldon 35°55
16� 94°50
18� 795 1175 340 Silty clay Broadleaf forest
Blue River basin at Blue 33°59
49� 96°14
27� 1233 1036 176 Clay Woody savannah
Illinois River basin at Watts 36°07
48� 94°34
19� 1645 1160 302 Silty clay Broadleaf forest
Elk River basin at Tiff City 36°37
53� 94°35
12� 2251 1120 286 Silty clay Broadleaf forest
Illinois River basin at Tahlequah 35°55
22� 94°55
24� 2484 1157 300 Silty clay Broadleaf forest
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training period to 7.17 cms in the validation period;
standard deviation from 27.6 to 16.8 cms). This might
be the indication that the stationarity assumption for
streamflow was violated. Consequently, the accuracy
levels of the simulations during validation period were
adversely affected. Future work could include a more
diagnostic analysis of the data to identify the causes for
the poor validation results. If the stationarity assump-
tion holds, the mean and variance of the streamflow
from one period to another should be similar or very
close (the closeness of these values is a subjective judg-
ment made by the modeler or forecaster). Therefore
the accuracy level during the validation period will not
deteriorate significantly. To use this technique in the
operational mode so as to decrease the deterioration in
the forecast, the forecaster (modeler) should constantly
compare the mean and variance of recently available
real-time observations against the mean of the histori-
cal observations for the same period. Statistical mea-
sures could be included in the procedure to identify
when the mean and variance of the new observations
are such that the condition of data stationarity is vio-
lated. In some cases the modeler may decide to use just
some specific years to remove the bias and train the
multimodel scheme to facilitate a more accurate real-
time forecast (e.g., if the current year seems to be a wet
year, the modeler could use historical data from other
wet years).

To get a measure of how multimodel simulations fare
against the best-calibrated single-model simulations, we
also included them in Figs. 4a–j. As revealed in these
figures, MMSE and M3SE outperform the best-
calibrated models (best-cal) for all the basins except
Blue River basin during the training period. During
validation period, however, the best-calibrated single-
model simulations have shown a slight advantage in
performance statistics over the multimodel simulations.
MMSE and M3SE are shown to be the best-performing
combination technique during validation period and
have statistics comparable to those of the best-
calibrated case, while WAM and SMA have worse per-
formance statistics.

c. Application of multimodel combination
techniques to river flow predictions from
individual months

Hydrological variables such as streamflow are known
to have a distinct annual cycle. The simulation accuracy
of hydrologic models for different months often mimic
this annual cycle, as shown in Fig. 6, which displays the
performance statistics of the individual model simula-
tions for Illinois River basin at Eldon during the train-
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ing period. Figure 5 reveals that a model might perform
well in some months, but poorly in other months, when
compared to other models. This led us to hypothesize
that the weights for different months should take on
different sets of values to obtain consistently skillful
simulations for all months. To test this hypothesis,
model weights for each calendar month were computed
separately for all basins and all multimodel combina-
tion techniques.

Figures 7a–j show the scatterplots of the HRMS val-
ues when a single set of model weights were computed
for overall training period versus the HRMS values
when monthly weights were computed. Figures
7a,c,e,g,i were for the training period and Figs. 7b,d,f,h,j
were for the validation period. From these figures, it is
clear that the performance of MMSE and M3SE with
monthly weights is generally better than that with single
sets of weights for the entire training period. Applying

FIG. 3. Hourly root-mean-square error vs Pearson coefficient for SMA and uncalibrated member models for all
of the basins.
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monthly weights for WAM does not improve the re-
sults, and in some cases the results worsen over the
training period. During the validation period, however,
the performance statistics using single sets of weights

are generally better than those using monthly weights.
This is because the stationarity assumptions are more
easily violated when the multimodel techniques are ap-
plied monthly.

FIG. 4. Hourly root-mean-square error vs Pearson coefficient for all model combinations (MMSE, M3SE, WAM,
and SMA) against the best-performing uncalibrated and calibrated model for all the basins (the closer to the
bottom-right corner, the better the model).
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d. The effect of different number of models used
for model combination on the skill levels of
multimodel predictions

The use of multimodel simulations leads to the ques-
tion of how many models are needed to ensure high
accuracy from multimodel simulations. To address this
question, we performed a series of experiments by se-
quentially removing a different number of models from
consideration. Figure 8 displays the test results for
MMSE. Shown in the figure are the average HRMS and
R values when a different number of models was in-
cluded in model combination. The figure suggests that
the inclusion of at least four models is necessary for the
MMSE to obtain consistently good skillful results. The
figure also shows that including over five models would
actually slightly deteriorate the results. This indicates

that the accuracy levels of the individual member mod-
els may affect the overall accuracy levels of the combi-
nation results. To illustrate how important the accuracy
of individual models is on the accuracy of the multi-
model simulations, we experimented with removing the
best-performing models and the worst-performing
models from consideration. The effects of removing the
best and worst models on the HRMS and R values are
shown in Figs. 9a–d. The immediate left point from the
center in the figures corresponds to the case in which
the worst-performing model (w1) was removed and the
next point with the two worst models (w1 and w2) re-
moved. The immediate right point from the center in
the figure corresponds to the case in which the best-
performing model (b1) was removed and the next point
with two best models (b1 and b2) removed. The results
presented in Fig. 9 highlight two interesting observa-

FIG. 6. Monthly HRMS of uncalibrated member models for Illinois River basin at Eldon.

FIG. 5. An excerpt of streamflow simulation results for the Illinois River basin at Watts
during the forecast period, illustrating the performance of MMSE and M3SE combination
techniques against the observed and best-calibrated model. As can be seen M3SE has feasible
streamflow values when MMSE produces negative streamflow values.
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tions. First, notice that excluding the best model(s)
would deteriorate the simulation accuracy more signifi-
cantly compared to eliminating the weakest model(s).
Therefore including more skillful models in the multi-
model ensemble set led to more accurate simulations,

since they are the major source of skill in the multimo-
del combination. The second interesting observation is
that excluding the first worst-performing model (W1)
caused deterioration in accuracy of multimodel simula-
tion (HRMS increases and R decreases) while we

FIG. 7. Hourly root-mean-square error of overall combination methods (HRMS-overall) vs monthly
combination methods (HRMS-Mon) for all the basins.
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would expect a monotonic improvement of statistic
(not deterioration). This reveals that even the worst
model(s) can capture some processes within the water-
shed that has been ignored by other models. This char-
acteristic can make them relatively useful in the multi-
model combination strategy.

5. Conclusions and future direction

We have tested four different multimodel combina-
tion techniques to the streamflow simulation results
from the DMIP, an international project sponsored by
the NWS Office of Hydrologic Development, to inter-

FIG. 9. Goodness-of-fit statistics for various model combinations.

FIG. 8. Average HRMS and R statistics for MMSE when a different number of models was included in model
combination.
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compare seven state-of-the-art distributed hydrologic
models in use today (Smith et al. 2004). The DMIP
results show that there is a large disparity in the per-
formance of the participating models in representing
the streamflow. While developing more sophisticated
models may lead to more agreement among models in
the future, this work has been motivated by the premise
that the accuracy of the existing models is not fully
realized. Multimodel combination techniques are vi-
able tools to extract the strengths from different models
while avoiding the weaknesses.

Through a series of numerical experiments, we have
learned several valuable lessons. First, simply averaging
the individual model simulations would result in con-
sensus multimodel simulations that are superior to any
single-member model simulations. More sophisticated
multimodel combination approaches such as MMSE
and M3SE can improve the simulation accuracy even
further. The multimodel simulations generated by the
MMSE and M3SE can be better than or at least com-
parable to the best-calibrated single-model simulations.
This suggests that future operational hydrologic simu-
lations should incorporate a multimodel combination
strategy.

Second, in examining the different multimodel com-
bination techniques, it was found that bias removal is an
important step in improving the simulation accuracy of
the multimodel simulations. MMSE and M3SE simula-
tions, which incorporated bias correction steps, perform
noticeably better than WAM simulations, which did not
incorporate bias removal. The M3SE has the advantage
of generating consistent streamflow results over the
MMSE because its bias removal technique is more
compatible with hydrologic variables such as stream-
flow. Also important is the stationarity assumption
when using multimodel combination techniques for
simulating streamflow. In the Blue River basin where
the average streamflow values are significantly differ-
ent between the training and validation periods, the
advantages of multimodel simulations were lost during
the validation period. This finding was also confirmed
when the multimodel combination techniques were ap-
plied to streamflow from individual months.

Third, we attempted to address how many models
are needed to ensure the good accuracy of multimodel
simulations. We found that at least four models are
required to obtain consistent multimodel simulations.
We also found that the multimodel simulation accuracy
is related to the accuracy of the individual member
models. If the simulation accuracy from an individual
model is poor in matching observations, removing that
model from consideration does not affect the accuracy
of the multimodel simulations very much. On the other

hand, removing the best-performing model from con-
sideration does adversely affect the multimodel simu-
lation accuracy. This conclusion supports the need for a
better understanding of hydrological processes and to
develop well-performing hydrological models that will
be included in the multimodel ensemble set. These
models are a major source of skill and their contribu-
tion in the multimodel combination can advance accu-
racy and skill of the final results.

This work was based on a limited dataset. There are
only seven models and a total of seven years of hourly
streamflow data. The findings are necessarily subject to
these limitations. Longer dataset and more models (es-
pecially skillful models) might improve the multimodel
combination results especially during the verification
period; however, this needs to be investigated. Further,
the regression-based techniques used here (i.e., MMSE,
M3SE, and WAM) are vulnerable to a multicolinearity
problem, which may result in unstable or unreasonable
estimates of the weights (Winkler 1989). This, in turn,
would reduce the substantial advantages achieved em-
ploying these combination strategies. There are rem-
edies available to deal with a colinearity problem
(Shamseldin et al. 1997; Yun et al. 2003). This may
entail more independent models to be included in the
model combination. It is recommended that a set of
hydrologic forecast experiments be conducted using
forecasted input forcings (such as forecasted precipita-
tion and temperature) to evaluate performance of mul-
timodel combinations as a real-time forecasting tool.

The multilinear-regression-based approach pre-
sented here is only one type of the multimodel combi-
nation approach. Over recent years, other model com-
bination approaches have been developed in fields
other than hydrology, such as the Bayesian model av-
erage (BMA) method, in which model weights are pro-
portional to the individual model accuracy and can be
computed recursively as more observation information
becomes available (Hoeting et al. 1999). Model combi-
nation techniques are still young in hydrology. The re-
sults presented in this paper and others (e.g., Butts et al.
2004a,b; Georgakakos et al. 2004) show promise that
multimodel simulations will be a superior alternative to
current single-model simulation.
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