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Abstract	

How	do	social	networks	differ	between	highly	collaborative	and	less	collaborative	forms	of	

governance?	Drawing	on	a	prior	study	that	characterized	the	level	of	collaboration	for	

three	federal	hydropower	relicensing	processes,	we	develop	exponential	random	graph	

models	of	meeting	attendance	and	participation	networks.	We	find	that	the	highly	

collaborative	relicensing	process	had	lower	overall	density	and	propensity	for	relatively	

fewer	and	stronger	interactions.	Reciprocity	is	highest	in	the	high-collaborative	process,	

indicating	that	it	is	characterized	by	mutual	interactions.	In	the	low-collaboration	process,	

patterns	of	connections	between	any	three	members	of	the	network	displayed	a	more	

hierarchical	structure,	suggesting	asymmetrical	interactions	between	active	versus	passive	

members	of	the	network.	By	linking	network	structure	to	collaborative	dynamics,	this	

study	helps	elaborate	potential	mechanisms	of	successful	collaboration.	

Keywords:	Collaborative	governance,	policy	networks,	GERGMs,	FERC	hydropower	

relicensing	
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Introduction	

Public	decision-makers	and	managers	increasingly	use	collaborative,	networked	forms	of	

governance	to	address	complex	public	problems.	In	a	collaborative	process,	public	agencies	

work	jointly	with	non-governmental	organizations	to	develop	or	implement	policies	and	

programs.	The	process	entails	building	trust	between	participants,	developing	shared	

understanding	of	the	problem	via	deliberation	and	negotiation,	and	developing	the	

resources,	capacity,	and	leadership	to	support	engagement	(Ansell	and	Gash	2008;	Bryson,	

Crosby,	and	Stone	2006;	Bryson,	Crosby,	and	Stone	2015;	Emerson	and	Nabatchi	2015a).	

Through	collaborative	governance,	public	agencies	can	overcome	longstanding	conflict	and	

build	stakeholder	trust	and	acceptance	of	decisions	(Emerson	et	al.	2009;	C.	Scott	2011).	It	

allows	participating	organizations	to	share	resources	(Berardo	2014)	and	integrate	diverse	

types	of	information	into	decisions	(Beierle	and	Cayford	2002;	Connick	and	Innes	2003;	

Korfmacher	and	Koontz	2003;	Dale	and	Armitage	2011).	While	analyses	of	collaborative	

governance’s	long-term	performance	are	scarce,	it	has	been	shown	to	positively	impact	the	

resources	managed	(Kelman,	Hong,	and	Turbitt	2013;	Scott	2015b).		

Accompanying	collaborative	governance’s	proliferation		are	calls	to	better	evaluate	its	

performance	(Koontz	and	Thomas	2006;	Thomas	and	Koontz	2011;	Gray	2000;	Innes	and	

Booher	1999;	Thomson,	Perry,	and	Miller	2008;	O’Leary	and	Bingham	2003;	Emerson	and	

Nabatchi	2015b;	Thomson,	Perry,	and	Miller	2009;	Newig	and	Fritsch	2009a;	Emerson,	

Nabatchi,	and	Balogh	2012).	Collaborative	governance’s	outcomes	are	theorized	to	emerge	

from	interpersonal	and	interorganizational	dynamics	like	principled	engagement	amongst	

participants	(Emerson	and	Nabatchi	2015a).	Thus,	in	order	to	better	understand	what	
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collaborative	governance	does,	it	is	important	to	consider	how	process	features	relate	to	

collaborative	outputs	and	outcomes	(Ulibarri	2015a).		

However,	assessing	interorganizational	collaboration	poses	numerous	analytical	

challenges.	Analyzing	collaboration	within	policy	networks	often	requires	intensive	data	

collection	and	analysis	methods	such	as	interviews,	document	analysis,	and	process	tracing	

(Ulibarri	2015b;	Connick	and	Innes	2003;	Margerum	2011)	or	survey	instruments	and	

statistical	modeling	(Schneider	et	al.	2003;	Berardo	and	Scholz	2010;	Berardo	2014;	Lubell,	

Henry,	and	McCoy	2010;	Thomson,	Perry,	and	Miller	2009;	Ulibarri	2015a;	Scott	and	

Thomas	2015).	The	effort	required	to	collect	and	analyze	these	data	present	a	significant	

research	design	barrier.	Perhaps	more	importantly,	these	modes	of	data	collection	do	not	

readily	facilitate	cross-case	comparisons,	longitudinal	analysis,	or	replication.	Survey	

instruments	or	interview	scripts	are	typically	customized	for	the	network	context	at	hand,	

for	instance	using	a	specific	type	of	“name	generator”	(Henry,	Lubell,	and	McCoy	2012)	to	

elicit	responses	concerning	network	partners.	While	it	is	technically	feasible	to	implement	

longitudinal	surveys,	pragmatic	issues	related	to	response	burden	and	survey	fatigue	loom	

large.	It	is	perhaps	emblematic	that	the	best	known	and	most	extensively	used	longitudinal	

collaborative	environmental	governance	network	data	are	a	two	period	sample	from	1999	

and	2001	(see	Scholz,	Berardo,	and	Kile	2008;	Berardo	and	Scholz	2010).	

A	readily	available	source	of	network	data	for	policy	and	management	actions	is	the	paper	

trail	of	meeting	minutes	and	public	comments,	containing	objective	data	concerning	who	

participants	are	and	how	they	interact.	However,	the	extent	to	which	readily	observable	

actions	like	meeting	attendance	reflect	underlying	collaborative	dynamics	is	unclear.	This	
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paper	takes	advantage	of	a	unique	opportunity	to	examine	the	relationship	between	

objective	participation	metrics	and	collaborative	dynamics.		

Having	already	established	the	underlying	level	of	collaboration	in	three	planning	

processes	using	document	analysis	and	survey	data	(see	Ulibarri	2015b),	we	use	statistical	

network	analysis	to	assess	whether	observed	network	linkage	patterns	(e.g.,	co-attendance	

at	group	meetings)	reflect	the	occurrence	of	key	collaborative	dynamics.	Thus,	we	make	a	

theoretical	contribution	to	the	public	administration	literature	by	speaking	to	the	

relationship	between	participatory	metrics	and	collaboration	amongst	network	

organizations;	we	also	aim	to	make	an	empirical	contribution	by	demonstrating	how	

policymakers	and	managers	might	assess	the	efficacy	of	a	collaborative	governance	process	

in	real-time	by	monitoring	attendance	and	participation.	

In	what	follows,	we	first	describe	the	cases	selected	for	this	analysis	and	the	process	by	

which	each	case	was	determined	to	exhibit	low,	medium,	or	high	collaboration.	We	then	

describe	the	literature	concerning	policy	networks	and	collaborative	governance	and	

develop	hypotheses	regarding	what	we	should	observe	in	low-collaboration	versus	high-

collaboration	networks.	Then,	we	specify	the	exponential	random	graph	models	(ERGMs)	

used	to	model	networks	and	test	our	hypotheses.	Finally,	we	assess	our	findings	and	

discuss	their	implications.		

Background	

We	examine	this	question	using	the	case	of	the	Federal	Energy	Regulatory	Commission	

(FERC)’s	process	for	licensing	hydropower	facilities.	To	obtain	a	license	for	continued	
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operation	of	a	hydropower	dam,	electric	utilities,	water	districts,	and	other	dam	

owners/operators	(hereafter	referred	to	as	“utilities”)	undertake	a	five-year	process	to	

identify	potential	project	impacts,	develop	and	interpret	studies	to	quantify	those	impacts,	

and	develop	a	license	application	containing	operating	requirements	to	mitigate	those	

impacts.	FERC	then	assesses	these	proposed	requirements	to	determine	the	final	contents	

of	a	license.	Traditionally,	the	application	was	developed	unilaterally	by	the	utility,	with	

feedback	from	resource	agencies	and	other	interested	stakeholders	occurring	after	the	

utility	submitted	its	license	application.	Since	the	late	1990s,	however,	a	series	of	process	

reforms	have	restructured	the	process	to	integrate	stakeholder	feedback	from	the	earliest	

scoping	phases	(Kosnik	2010).	At	minimum,	FERC	hydropower	relicensing	requires	a	

series	of	public	meetings	to	discuss	scoping,	study	development,	study	results,	and	draft	

and	final	license	applications.	However,	many	utilities	opt	to	exceed	these	requirements,	

working	closely	with	federal	and	state	agencies,	local	governments,	tribes,	non-profit	

organizations,	and	the	public	throughout	the	process.			

In	Ulibarri	(2015b),	document	analysis	and	a	participant	survey	were	used	to	measure	the	

degree	to	which	collaboration	occurred	amongst	stakeholders	for	a	series	of	recent	

hydropower	relicensing	processes.	Collaboration	was	conceptualized	following	Emerson	et	

al.’s	(2012)	“Integrative	Framework	for	Collaborative	Governance,”	which	focuses	on	three	

dynamics.	The	first,	principled	engagement,	reflects	the	use	of	face	to	face	deliberation	and	

negotiation	to	develop	shared	problem	definitions	and	decisions.	The	second,	shared	

motivation,	captures	the	extent	to	which	participants	trust	one	another	and	believe	the	

process	is	legitimate.	The	third,	capacity	for	joint	action,	measures	the	leadership,	
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structure,	and	resources	necessary	to	support	collaboration.	We	developed	measures	to	

operationalize	these	three	dynamics,	drawing	on	a	survey	of	relicensing	participants	(to	

measure	perceived	levels	of	trust,	efficiency,	and	co-creation)	and	analysis	of	meeting	

minutes,	public	comments,	technical	reports,	and	other	documents	developed	during	the	

relicensing	(to	qualitatively	and	quantitatively	assess	who	participated,	how	they	

interacted,	and	whether	the	broader	structure	supported	collaboration).	These	were	then	

used	to	measure	collaboration	in	eight	recently-completed	relicensing	processes	across	the	

country.	For	more	information,	see	Ulibarri	(2015b).		

In	this	analysis,	we	consider	three	distinct	relicensings,	shown	in	Table	1.	All	three	

processes	took	place	after	FERC’s	shift	to	a	more	collaborative	relicensing	approach.	These	

three	cases	were	selected	because	they	represent	three	distinct	levels	of	collaboration.	In	

Washington	(high	collaboration),	stakeholders	were	engaged	via	deliberation	and	

negotiation	throughout	the	relicensing	process,	such	that	both	large	and	small	decisions	

incorporated	the	full	set	of	interests	in	the	relicensing.	In	Missouri	(medium	collaboration),	

the	process	was	designed	to	be	collaborative	and	inclusive,	with	regular	meetings,	neutral	

facilitation,	and	interest-based	negotiation.	However,	stakeholders	did	not	trust	one	

another,	so	once	discussions	entailed	developing	the	actual	management	regime,	

stakeholders	no	longer	engaged	jointly	and	most	large	decisions	were	made	by	subsets	of	

stakeholders.	In	Georgia	(low	collaboration),	stakeholders	were	engaged	only	to	the	degree	

required	by	FERC	regulation	and	most	decisions	were	made	unilaterally	by	the	utility.		
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Table	1:	Level	of	collaboration	by	case	

	 Washington	 Missouri	 Georgia	

Principled	
engagement	

High	 Medium	 Low	

Shared	motivation	 High	 Medium-low	 Low	

Capacity	for	joint	
action	

High	 Medium	 Medium-low	

Overall	
collaboration	

High	 Medium	 Low	

Note:	Overall	collaboration	is	aggregated	from	principled	engagement,	shared	motivation,	and	capacity	for	joint	
action.	See	Ulibarri	(2015b)	for	more	information.	

Hypotheses	

The	levels	of	collaboration	shown	in	Table	1	stem	from	survey	instruments	and	document	

analysis	applied	to	each	case.	What	we	ask	here	is	to	what	extent	statistical	network	

analysis	of	process	participation	tracks	with	the	more	detailed	findings	summarized	in	

Table	1.	Statistical	network	analysis	is	a	common	methodological	toolkit	applied	to	

institutional	collective	action	and	collaborative	governance	research	(Henry,	Lubell,	and	

McCoy	2011;	Berardo	and	Scholz	2010;	Berardo	2014;	Berardo,	Heikkila,	and	Gerlak	2014;	

Lee,	Lee,	and	Feiock	2012;	Leifeld	and	Schneider	2012;	Jasny	2012;	Jasny	and	Lubell	2015;	

Lubell	et	al.	2012;	Henry	2011;	Scott	and	Thomas	2015;	Scott	2015a).	Using	network	

analysis	allows	us	to	characterize	interorganizational	network	structure	and	to	test	

hypotheses	concerning	individual	network	behaviors.		

Because	this	paper	seeks	to	compare	network	structures	and	observed	collaboration	level,	

we	are	particularly	interested	in	what	might	be	expected	in	each	case.	In	other	words,	what	

should	a	network	around	hydropower	facility	relicensing	to	look	like	when	collaboration	is	
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high	versus	when	collaboration	is	low?	The	policy	network	literature	informs	our	

expectations	regarding	what	structural	characteristics	should--or	should	not--be	

prominent	in	processes	with	a	given	level	of	collaboration,	as	different	network	

configurations	distinctly	affect	the	ability	of	a	collaborative	network	to	solve	the	problem	it	

was	created	to	solve	(Berardo	2014;	Bodin	and	Crona	2009).	

Network	density	

Network	density	refers	to	the	average	value	of	a	randomly	chosen	network	tie.	Simply	put,	

denser	networks	have	more	ties	and/or	higher	value	ties,	so	the	average	value	of	a	tie	is	

greater.	Bodin	and	Crona	(2009)	hypothesize	that	in	general,	a	greater	number	of	ties	

presents	greater	opportunities	for	joint	actions	by	increasing	communication	and	fostering	

the	development	of	norms	of	reciprocity	and	trust.	This	hypothesis	reflects	the	broader	

notion	that	trust	and	social	capital	amongst	actors	facilitate	collective	action	(Putnam	

2000;	Ostrom	2000;	Axelrod	1997;	Pretty	and	Ward	2001);	further,	several	analyses	of	

natural	resource	governance	networks	demonstrate	a	positive	relationship	between	

network	density	and	joint	action	(Hahn	et	al.	2006;	Sandström	and	Carlsson	2008).		

H1:	High	collaboration	processes	will	exhibit	greater	network	density	than	low	collaboration	
processes.		

Our	network	data	(described	below)	consist	of	discrete	count	data	reflecting	the	total	

number	of	interactions	between	two	actors	within	observed	relicensing	meetings.	Coded	

network	ties	are	thus	counts,	rather	than	a	binary	metric,	allowing	us	to	explore	the	extent	

to	which	interactions	are	concentrated	within	a	relatively	small	subset	of	network	actors,	

or	whether	interactions	are	more	evenly	distributed	across	the	network.	Specifically,	
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network	density	can	be	increased	in	two	ways:	either	by	increasing	the	number	of	total	ties	

in	the	network,	or	by	increasing	the	value	of	ties	that	are	already	greater	than	zero.		

Recall	that	in	essence,	network	density	is	expected	to	increase	collaboration	because	each	

network	tie	presents	an	opportunity	for	communication	and	joint	action	(Bodin	and	Crona	

2009).	However,	two	networks	can	exhibit	similar	density	statistics	and	yet	be	structured	

very	differently.	Networks	in	which	interactions	are	highly	concentrated	amongst	a	limited	

subset	of	actors,	with	more	isolated	actors	and	fewer	paths	of	communication,	can	have	

high	overall	density	due	to	these	dominant	relationships	even	if	there	is	a	lack	of	overall	

connectivity.	Accordingly,	one	might	anticipate	that	networks	characterized	by	a	stronger	

bimodal	distribution	of	high-value	ties	and	empty	ties	might	not	facilitate	joint	action.	

Specifically,	overall	density	(tie	presence	and	magnitude)	and	non-zero	density	(tie	

presence)	will	differ	to	the	extent	that	a	few	actors	tend	to	dominate	dialogue	and	

deliberation	(which	will	increase	overall	density	but	not	non-zero	tie	density)	versus	more	

broadly	participative	processes	(which	will	increase	overall	density	and	non-zero	tie	

density).	Thus,	we	hypothesize	that	relicensing	processes	shown	to	be	more	collaborative	

will	differ	from	less	collaborative	relicensing	processes	in	terms	having	more	observed	

connections	between	actors	(i.e.,	more	ties	with	a	value	of	at	least	one	[“non-zero”	ties]),	

but	not	necessarily	in	terms	of	the	average	tie	value	(which	is	driven	by	both	the	number	of	

non-zero	ties	and	the	magnitude	of	each	tie	value).		

H2:	High	collaboration	processes	will	exhibit	a	lesser	tendency	to	have	empty	ties	than	low	
collaboration	processes.	
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Network	reciprocity:	Mutual	ties	

Low-level	structural	characteristics	within	a	network,	such	as	the	patterns	of	ties	between	

network	actors,	greatly	influence	network-level	outcomes	(Provan	and	Kenis	2008).	For	

instance,	reciprocated	ties	(i.e.,	a	tie	from	A	→	B	and	from	B	→	A)	can	serve	to	make	

cooperation	more	feasible	by	increasing	credibility	amongst	actors	(Berardo	and	Scholz	

2010).	Governance	processes	that	involve	complex	systems--in	the	case	of	hydropower	

relicensing	the	system	includes	energy	production,	aquatic	ecosystems,	and	water	

resources--require	a	high	degree	of	information	exchange	amongst	relatively	specialized	

actors	(Crona	and	Bodin	2006).	Patterns	of	mutual	exchange	can	strengthen	relationships	

between	these	actors	(Berardo	and	Scholz	2010;	Putnam,	Leonardi,	and	Nanetti	1993).		

The	collaborative	governance	literature	strongly	emphasizes	the	need	for	trust	and	

commitment	amongst	stakeholders	for	collaborative	efforts	to	be	successful	(Wondolleck	

and	Yaffee	2000;	Margerum	2011;	Margerum	2002).	Particularly	in	situations	where	actors	

do	not	largely	agree	on	goals,	trust	and	information	credibility	are	critical	for	sustaining	

collective	action	and	reducing	defection	(Berardo	2014;	Leach	and	Sabatier	2005).	Thus,	

while	reciprocated	ties	might	be	redundant--and	thus	inefficient--in	terms	of	information	

sharing,	network	structures	that	are	minimally	redundant	can	impede	performance	when	

credibility	is	at	a	premium	(Lazer	and	Friedman	2007).	Reciprocity	can	enhance	the	

credibility	of	actors’	commitment	to	one-another	and	thus	support	collaboration	(Berardo	

and	Scholz	2010).		

H3:	Higher	collaboration	processes	will	exhibit	a	stronger	tendency	for	reciprocal	ties	than	
low	collaboration	processes.	
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Network	cohesion:	efficiency,	credibility,	and	inclusiveness	

While	reciprocated	ties	might	be	important	for	fostering	joint	action,	the	presence	of	dense,	

close	knit	subgroups	within	a	network	can	drive	or	inhibit	joint	action,	depending	upon	the	

problem	context	(Bodin	and	Crona	2009).	One	one	hand,	dense	subsystems	of	ties	in	which	

actors	are	all	closely	connected	are	duplicative,	and	thus	potentially	inefficient	in	terms	of	

gathering	and	sharing	information.	Accordingly,	low	network	cohesion--in	terms	of	the	

presence	of	clearly	definable,	densely	connected	subgroups--can	have	negative	effects	on	

the	capacity	for	joint	action	across	the	broader	network	(Bodin	and	Crona	2009).	Linkages	

that	span	subgroups	and	increase	network	cohesion	facilitate	access	to	external	knowledge	

and	resources,	thereby	supporting	collective	action	(Newman	and	Dale	2007;	Sandström	

and	Carlsson	2008).	For	instance,	greater	cross-subgroup	linkage	has	been	shown	to	

increase	collective	action	beliefs	and	trust	in	governance	processes	(Schneider	et	al.	2003),	

whereas	low	network	cohesion	(i.e.,	more	isolated	subgroups)	can	also	inhibit	broader	

collaboration	and	foster	dueling	coalitions	(Borgatti	and	Foster	2003).	

On	the	other	hand,	more	isolated	subgroups	and	lower	network	cohesion	do	not	always	

deter	effectiveness.	Groups	can	act	as	a	buffer	against	the	“constant	influx	of	less	relevant	

information	from	numerous	other	actors”	(Bodin	and	Crona	2009,	368)	and	foster	

informational	diversity	by	allowing	different	knowledge	to	develop	in	different	subgroups	

(Bodin	and	Crona	2009).		Further,	smaller	groups	of	close-knit	actors	can	be	more	efficient	

at	decision-making	(Provan	and	Kenis	2008).		

This	tension	reveals	an	efficiency-inclusivity	tradeoff	(Provan	and	Kenis	2008)	between	the	

strategic	benefits	of	changing	the	scale	or	level	of	government	actions	to	involve	non-state	
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actors	on	one	hand	(Newig	and	Fritsch	2009b),	and	the	time,	effort,	and	costs	of	

coordination	and	cooperation	on	the	other	(Margerum	2011).	Thus,	collaborative	

governance	institutions	must	navigate	tradeoffs	between	involvement	(providing	access	to	

resources	[(Schneider	et	al.	2003)],	increased	perceived	legitimacy	[(Dietz	and	Stern	2008;	

Bryson,	Crosby,	and	Stone	2006;	Margerum	2011)],	diverse	knowledge	that	can	improve	

policy	[(Beierle	and	Cayford	2002;	Sirianni	2009)],	and	scale	advantages	[(Gerlak,	Lubell,	

and	Heikkila	2012;	Karkkainen	2002;	Feiock	and	Scholz	2009;	Feiock	2013)])	and	

exclusion	(facilitating	quick	action	[(Wondolleck	and	Yaffee	2000;	Imperial	2005;	

Margerum	2011)],	reducing	external	decision	costs	[(Feiock	2013)],	and	excluding	actors	

who	lack	sufficient	expertise	[(Lasker	and	Weiss	2003;	Day	and	Gunton	2003)]	or	

resources	[(Wondolleck	and	Yaffee	2003)]	to	contribute	meaningfully).	These	dueling	

forces	place	a	premium	on	collaborating	with	the	right	people	and	advantage	cases	where	

there	are	fewer	"wrong"	people	involved.		

One	way	that	networks	exhibit	tendency	towards	either	broader	cohesion	or	more	insular	

subgroups	is	through	transitivity.	Transitivity	reflects	the	“a	friend	of	a	friend	is	my	friend”	

axiom,	in	that	networks	with	high	transitivity	are	those	where	if	actor	A	is	connected	to	

actors	B	and	C,	then	actors	B	and	C	are	more	likely	to	be	connected	to	one-another	as	well	

(Kilduff	and	Tsai	2003;	Lubell	et	al.	2012).	This	tendency	for	transitive	structures	to	arise	is	

known	as	triad	closure	bias,	because	it	means	that	network	two-paths	(e.g.,	k→i→j	on	left	

side	of	Figure	1)	tend	to	close	into	triangles	(right	side	of	Figure	1).	Thus,	high	transitivity	

is	reflected	in	dense,	interconnected	networks	(Berardo	and	Scholz	2010)	that	reinforce	

direct	ties	between	participants	(Desmarais	and	Cranmer	2012a).	In	contrast,	a	network	of	
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similar	density	but	with	lower	triad	closure	bias	is	characterized	by	fewer	isolated	

subgroups	and	greater	overall	cohesion	(for	instance,	if	triad	closure	bias	is	lower,	actor	k	

in	Figure	1	is	relatively	more	likely	to	choose	actor	m).		

Figure	1:	Two-paths	and	transitive	triad	network	structures	

Berardo	and	Scholz	(2010)	discuss	how	the	collective	action	dilemma	itself	can	shift	the	

optimal	balance	between	dense,	more	redundant	subgroup	structures	and	more	dispersed,	

cohesive	tie	patterns.1	The	case	at	hand,	hydropower	relicensing,	exhibits	a	great	deal	of	

fragmented	authority	because	it	involves	local,	state,	and	federal	actors	in	different	policy	

subfields	of	energy,	fish	and	wildlife,	water	resources,	and	land	use.	Scholz	et	al.	(2008)	

show	that	search	costs	are	a	more	significant	transaction	cost	barrier	than	credibility	

issues	in	networks	constituted	by	fragmented	authority;	thus,	network	effectiveness	(in	

																																																								
1	Berardo	and	Scholz	(2010)	specifically	demonstrate	that	actors	are	more	likely	to	choose	“bonding”	
structures	that	maximize	credibility	and	minimize	defection	in	higher-risk	cooperation	dilemmas	and	more	
likely	to	choose	“bridging”	structures	that	maximize	information	transmission	and	network	cohesion	in	
lower-risk	coordination	dilemmas.	While	our	analysis	does	not	specifically	use	the	bridging	and	bonding	
capital	framework,	the	Berardo	and	Scholz	“Risk	Hypothesis”	nonetheless	demonstrates	the	importance	of	
problem	context.		

Two-path	 Transitive Triad	

i	

k	

j	

m	

i	

k	

j	

m	
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terms	of	whether	the	relicensing	network	is	able	to	successfully	collaborate	and	produce	

quality	outputs)	in	light	of	fragmented	authority	is	anticipated	to	require	connectivity	and	

network-wide	cohesion	over	credibility	and	commitment.		

H4:	High	collaboration	processes	will	exhibit	lower	triad	closure	bias	than	low	collaboration	
processes.	

Table	2:	Hypothesized	differences	between	high-	and	low-collaboration	processes	

H1:	High	collaboration	relicensing	processes	will	exhibit	greater	network	density	than	low	
collaboration	processes		

H2:	High	collaboration	relicensing	processes	will	exhibit	a	lesser	tendency	to	have	empty	
ties	than	low	collaboration	processes	

H3:	Higher	collaboration	relicensing	processes	will	exhibit	a	stronger	tendency	for	reciprocal	ties	
than	low	collaboration	processes.	

H4:	High	collaboration	relicensing	processes	will	exhibit	lower	triad	closure	bias	than	low	
collaboration	processes	

	

Data	

As	described	above,	instead	of	measuring	collaborative	networks	using	respondent-

generated	data,	this	paper	tests	the	linkages	between	observed	participation	and	

collaborative	dynamics.	We	code	the	relevant	network	in	each	case	to	be	the	full	set	of	

individuals	who	are	recorded	as	having	attending	at	least	one	meeting	at	some	point	in	the	

relicensing	process.	Ties	between	individuals	are	then	coded	based	upon	recorded	

comments	recovered	from	meeting	minutes.	

Records	of	meeting	attendance	and	meeting	minutes	for	the	three	cases	were	obtained	

from	http://elibrary.ferc.gov.	All	meetings	were	catalogued	by	purpose,	location,	and	date.	
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Because	two	of	the	cases	held	many	meetings,	a	subsample	of	meetings	was	selected	for	

further	analysis.	For	Washington,	every	tenth	meeting	chronologically	was	selected	

(resulting	in	34	of	336	total	meetings).	For	Missouri,	approximately	half	of	the	meetings	

had	minutes	available,	and	every	other	meeting	of	those	with	minutes	was	selected	(for	32	

of	138	meetings).	For	Georgia,	which	held	a	comparatively	small	number	of	meetings,	every	

meeting	with	minutes	was	included	in	the	sample	(for	9	of	11	meetings).		

For	sampled	meetings,	all	attendees	were	catalogued,	along	with	their	organization	and	

organization	type	(utility,	federal	agency,	state	agency,	local	government,	NGO,	business,	

tribe,	consultant/lawyer,	facilitator,	or	individual).	To	identify	how	attendees	participated,	

meeting	minutes	were	analyzed	using	QSR	NVivo	10	qualitative	analysis	software,	

cataloguing	every	instance	where	an	individual	(1)	made	a	presentation	or	(2)	participated	

in	a	discussion.	

Emerson	and	Nabatchi	(2015a)	characterize	“principled	engagement”	within	collaborative	

governance	as	an	interactive	process	of	discovery	and	deliberation.	The	extent	to	which	

principled	engagement	occurs	is	a	key	collaborative	dynamic	that	drives	beneficial	

outcomes	(Ulibarri	2015a,	2015b).	The	meeting	minutes	we	code	provide	direct	evidence	

of	dialogue	and	deliberation	amongst	stakeholders,	demonstrating	which	participants	

present	or	discuss	key	issues.	If	a	given	participant	gives	a	presentation	or	substantively	

engages	in	discussion	at	a	given	meeting,	we	code	a	tie	value	of	1	from	the	discussant	to	all	

other	meeting	attendees.2	If	a	meeting	attendee	does	not	participate	in	discussion,	ties	from	

																																																								
2	We	do	not	assume	that	a	positive	tie	value	implies	collaboration	between	the	two	parties,	as	participants	
might	be	voicing	disagreement	with	one	another.	Rather,	a	positive	tie	value	simply	represents	an	act	of	
engagement.		
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said	attendee	to	other	meeting	attendees	are	given	a	value	of	0.	Because	of	the	one-way	

nature	of	this	interaction	(one	individual	is	talking	to--not	necessarily	with--another	

individual)	these	are	directed	ties	that	originate	at	the	discussant	and	terminate	with	

audience	members.	Thus,	in	each	network	a	tie	from	one	individual	to	another	is	not	

necessarily	reciprocated	(i.e.,	A-->B	does	not	equal	B-->A).3		

Since	deliberation	amongst	participants	can	occur	at	more	than	one	meeting,	tie	values	

between	individuals	are	not	limited	to	0	and	1.	After	coding	meeting-specific	ties,	we	then	

sum	the	meeting-specific	tie	values	across	all	meetings.	For	instance,	the	tie	value	between	

individuals	A	and	B	(A-->B)	is	equal	to	the	number	of	times	that	individual	A	has	engaged	in	

substantive	discussion	at	a	meeting	in	which	individual	B	was	in	attendance.	These	tie	

values	summarize	the	extent	to	which	each	organization	had	the	opportunity	to	learn	about	

the	perspectives	and	goals	of	other	network	organizations	within	the	collaborative	

relicensing	process.		Table	3	summarizes	descriptive	network	statistics	for	each	

relicensing.		

	 	

																																																								
3	An	alternative	for	examining	co-participation	would	be	to	just	use	meeting	attendance,	as	presumably	there	
are	verbal	(and	nonverbal)	interactions	that	occur	at	meetings	(e..g,	hallway	conversations)	that	contribute	to	
network	function.	However,	this	poses	a	modeling	challenge	in	that	if	attendance	is	used	as	a	basis	for	coding	
interactor	ties,	then	every	attendee	at	a	given	meeting	would	be	coded	as	having	a	tie	to	every	other	attendee.	
This	makes	estimation	problematic,	since	the	network	then	consists	of	complete	subgroups	(in	which	all	
possible	ties	exist)	and	empty	subgroups	in	which	no	ties	exist.	Going	forward,	we	hope	to	generate	data	that	
can	be	used	to	examine	participation	in	more	detail,	but	using	meeting	minutes	to	code	deliberation	is	an	
important	step	in	this	direction.		
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Table	3:	Network	summary	statistics	

	 #	Actors	 Total	Edges	

Washington	 146	 1241	

Missouri	 157	 5119	

Georgia	 84	 1297	

	

While	we	sampled	the	meetings	to	make	the	research	endeavor	feasible	(as	coding	

hundreds	of	meeting	would	take	a	substantial	amount	of	time),	it	does	potentially	affect	our	

analysis.	ERGMs	rest	on	the	assumption	that	all	ties	are	observed;	by	sampling,	we	

knowingly	omit	some	ties.	However,	these	omitted	ties	are	missing	randomly	(given	our	

sampling	protocol),	and	therefore	should	represent	the	full	network	were	we	to	code	all	

ties.	Moreover,	the	unsampled	meetings	are	not	substantively	different	from	those	included	

in	the	sample--whether	by	topic,	location,	or	timing	over	the	course	of	the	relicensing--so	

we	have	no	reason	to	assume	that	a	substantially	different	pattern	of	attendance	or	

dialogue	took	place	at	those	meetings.	Finally,	unsampled	meetings--and	resultant	missing	

edges--are	less	problematic	in	this	cross-sectional	analysis	since	we	are	simply	summing	

observed	interactions	across	observed	meetings.	In	doing	so,	we	are	not	making	an	

assumption	about	what	did	or	did	not	happen	at	other	meetings	(as	we	would	be	in	a	

longitudinal	framework	where	ties	might	be	assumed	to	form	or	dissolve	over	time),	but	

rather	simply	assessing	overall	patterns	of	dialogue	across	observed	meetings.		

Two	additional	notes	are	merited	about	potential	limitations	underlying	our	data.	First,	

given	the	wildly	different	number	of	meetings	in	each	case,	we	might	expect	to	see	

differences	in	network	structure	that	stem	purely	from	differing	opportunities	to	engage.	



	
Ulibarri	&	Scott	2017	

Linking	Network	Structure	to	Collaborative	Governance	
https://doi.org/10.1093/jopart/muw041	

18	

With	fewer	meetings,	we	would	expect	to	have	larger	attendance;	with	more	meetings,	

people	might	be	more	selective	about	when	they	attend,	potentially	increasing	the	

prevalence	of	zero-valued	ties.	However,	these	differences	should	not	affect	our	other	

network	measures.	A	tie	represents	a	unidirectional	flow	of	engagement,	not	simply	co-

attendance,	so	the	overall	statistics	should	capture	differences	in	the	internal	dynamics	of	

each	meeting	regardless	of	who	shows	up.	Second,	the	extent	to	which	the	meeting	minutes	

captured	every	participant	action	varied	across	the	three	cases.	The	Georgia	minutes	

provided	word-for-word	transcriptions,	and	Missouri	provided	thorough	summaries	with	a	

name	attached	to	every	idea.	Washington	had	some	similarly	detailed	minutes,	but	other	

minutes	(particularly	during	settlement	negotiations)	instead	tracked	only	the	

organization	or	mentioned	a	topic	that	was	discussed	without	attribution.	Because	not	

every	participant	action	was	captured	in	the	Washington	minutes,	they	likely	undercount	

tie	values	relative	to	actual	levels	of	engagement.	

Modeling	Networks	

Since	this	research	concerns	collaboration	amongst	network	actors,	we	use	a	statistical	

network	analysis	to	analyze	links	between	individual	actors	as	the	dependent	variable.	In	a	

network,	the	presence	of	one	network	tie	influences	the	presence	of	others,	thus	violating	

the	standard	independence	assumptions	of	most	regression	models	(Robins,	Lewis,	and	

Wang	2012).	We	use	exponential	random	graph	models	(ERGMs),	which	explicitly	model	

interdependence	amongst	network	ties	(Lubell	et	al.	2012)	by	modeling	every	tie	

conditionally	based	upon	all	other	observed	ties	(Lusher,	Koskinen,	and	Robins	2013).	

Appendix	A	discusses	the	mechanics	of	ERGMs	in	detail.		
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While	ERGMs	are	commonly	applied	to	binary	networks	where	a	tie	is	simply	present	or	

absent,	recent	methodological	advances	enable	the	use	of	generalized	ERGMs	(GERGMs)	

that	model	valued	network	ties	(Desmarais	and	Cranmer	2012b;	Krivitsky	2012a).	As	

described	previously,	we	represent	each	tie	as	the	sum	of	all	unidirectional	engagement	

across	meetings	from	one	participant	to	another.	As	these	summary	values	are	count	data,	

a	Poisson-reference	GERGM	is	used	to	model	the	overall	network	(see	Krivitsky	(2012b)	

and	Krivitsky	and	Butts	(2013a)	for	a	detailed	explanation	of	the	Poisson	GERGM	

specification).		

GERGMs	facilitate	inference	on	a	network	of	interest	by	comparing	the	observed	network	

to	a	distribution	of	simulated	networks	that	have	similar	characteristics.	Appendix	A	

provides	a	fuller	discussion	of	this	process	(and	presents	model	goodness-of-fit	analysis).	

Essentially,	we	model	the	observed	network	as	a	function	of	endogenous	structural	

characteristics	and	exogenous	attributes	of	participating	organizations,	and	then	compare	

the	estimated	parameters	to	a	distribution	of	parameters	estimated	from	a	set	of	simulated	

networks	weighted	according	to	similarity	to	the	observed	network.	Empirical	parameters	

that	fall	in	the	extreme	of	either	tail	of	the	simulated	parameters	distribution	are	

considered	“significant,”	since	it	is	unlikely	that	a	given	network	structure	occurred	simply	

due	to	random	variation.		

An	example	of	a	structural	term	that	can	be	fit	in	a	GERGM	is	a	two-path,	wherein	two	

actors	(Organization	A	and	Organization	C)	are	linked	via	a	path	of	ties,	first	from	

Organization	A	to	Organization	B	(A-->B)	and	second	from	Organization	B	to	Organization	

C	(B-->C).	Of	course,	a	primary	challenge	is	linking	these	types	of	structural	terms	to	the	
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theoretical	hypotheses	outlined	above.	We	draw	upon	several	recent	analyses	linking	

theoretical	network	concepts	with	network	measures	(Burt	2005;	Bodin	and	Crona	2009;	

Scholz,	Berardo,	and	Kile	2008;	Borgatti	2005;	Henry	and	Vollan	2014)	and	recent	ERGM	

scholarship	(Lusher,	Koskinen,	and	Robins	2013;	Desmarais	and	Cranmer	2012b;	

Desmarais	and	Cranmer	2012a;	Krivitsky	2012a)	to	link	the	four	hypotheses	developed	

above	with	expected	model	results.		

To	represent	network	density	(H1),	we	use	the	Sum	parameter	in	the	R	ergm	package	

(Handcock	et	al.	2014).	This	parameter	reflects	the	expected	value	of	a	tie	between	i	and	j	

based	upon	the	value	of	all	ties	observed	in	the	network.	Network	density	is	computed	as:		

𝑔(𝑦) = ∑('()∈* 𝑦'( 		 	 	 	 	 	 (Eq.	1)	

where	𝑦'(is	the	value	of	an	observed	tie	from	individual	i	to	individual	j,	and	Y	is	the	set	of	

all	network	members.	The	sum	term	acts	as	an	intercept,	in	that	it	reflects	the	expected	

value	of	a	randomly	selected	tie	across	all	actors.	Given	that	we	code	tie	values	based	upon	

observed	deliberation	at	meetings,	it	is	important	to	consider	that	average	tie	value	is	

potentially	subject	not	only	to	what	happens	at	meetings	but	the	number	of	meetings	that	

are	observed.	Network	density	increases	as	ties	take	on	higher	values	(which	can	only	

happen	as	more	meetings	are	observed)	and	decreases	as	more	participants	are	observed	

(because	density	is	a	ratio	of	total	tie	values	to	number	potential	actor	pairs,	or	dyads).	

Thus,	in	order	to	test	Hypothesis	1	using	a	consistent	basis	of	comparison	across	the	three	

cases,	we	control	for	the	number	of	meetings	each	actor	attends	in	estimating	the	Sum	

parameter.	This	serves	to	produce	density	estimates	that	differ	from	the	raw	ratio	of	the	

sum	of	all	observed	ties	over	total	dyads	(because	the	Sum	parameter	estimate	is	the	



	
Ulibarri	&	Scott	2017	

Linking	Network	Structure	to	Collaborative	Governance	
https://doi.org/10.1093/jopart/muw041	

21	

predicted	value	of	a	tie	from	actor	i		to	actor	j	controlling	for	the	number	of	meetings	that	

actor	i	attended),	and	accounts	for	sampling	differences	so	as	to	enable	more	accurate	

comparison	of	network	density.	We	thus	test	Hypothesis	1	by	comparing	the	sign	and	

magnitude	of	the	Sum	parameters	in	GERGM	models	that	also	include	number	of	meetings	

attended	as	a	covariate.		

Hypothesis	2	asserts	that	high	and	low	collaboration	networks	will	be	of	similar	overall	

density,	but	that	high	collaboration	networks	will	have	fewer	non-existent	ties.	To	test	

Hypothesis	2,	we	add	a	Non-zero	term	that	reflects	the	total	number	of	ties	greater	than	

zero	observed	in	the	network	(i.e.,	total	number	of	edges):		

𝑔(𝑦) = ∑('()∈* 𝐼(𝑦'( ≠ 0)	 	 	 	 	 (Eq.	2)	

to	the	baseline	models	used	to	test	Hypothesis	1.	Having	controlled	for	overall	network	

density,	the	sign	and	magnitude	of	the	Non-zero	term	thus	reflects	the	tendency	for	a	

network	to	have	more	ties	between	actors	(independent	of	magnitude).	The	estimated	non-

zero	coefficient	represents	the	additive	log	change	in	the	expected	value	of	a	tie	between	

nodes	i	and	j	given	that	the	number	of	non-zero	ties	held	by	node	i	increases	by	one.		

To	compare	reciprocity	and	transitivity	across	the	three	relicensing	networks,	we	fit	a	third	

series	of	models	that	include	terms	for	mutual	ties	and	transitive	triads.	The	Mutual	term	

(Handcock	et	al.	2014)	models	the	prevalence	of	reciprocated	ties	between	nodes	for	non-

binary	network	ties:	

𝑔(𝑦) 	= 	∑('()∈* 𝑚𝑖𝑛(𝑦'(, 𝑦(')		 	 	 	 	 (Eq.	3)	
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by	recording	the	minimum	observed	tie	value	between	each	pair	of	actors.	This	reflects	

how	the	observed	tie	value	from	node	i	to	node	j	influences	the	expected	value	of	a	tie	from	

node	j	to	node	i.	If	network	reciprocity	is	high,	then	this	statistic	will	be	higher	because	

𝑦'(and	𝑦('show	a	tendency	to	increase	in	concert	and	thus	raise	𝑚𝑖𝑛(𝑦'(, 𝑦(').		

Transitivity	is	modeled	using	the	transitiveweights	parameter	in	the	ergm	packages	

(Handcock	et	al.	2014),	which	models	triad	closure	bias	for	non-binary	network	ties.	The	

formula:	

𝑔(𝑦) 	= ∑('()∈* 𝑚𝑖𝑛(𝑦'(,𝑚𝑎𝑥5∈6(𝑚𝑖𝑛(𝑦'5, 𝑦5()))	 	 	 	 (Eq.	4)	

is	based	upon	the	generalization	of	transitivity	terms	used	in	binary	ERGMs	for	valued	tie	

data	provided	by	Krivitsky	(2012a).		Essentially,	this	term	first	identifies	the	minimum	

value	along	each	two-path	by	which	nodes	i	and	j	are	connected;	that	is,	if	A-->B	=	2	and	B--

>C	=	3,	then	𝑚𝑖𝑛(𝐴𝐵, 𝐵𝐶) 	= 	2.	Next,	it	identifies	the	maximum	value	out	of	all	observed	

two-paths	between	nodes	i	and	j	(e.g.,	A-->B-->C).		Finally,	it	identifies	the	minimum	value	

between	the	former	result	and	the	actual	tie	value	from	node	i	to	node		j	.	The	basic	

intuition	here	is	that	in	networks	with	high	transitivity,	the	final	value	for	this	term	should	

be	higher	on	average	since	more	triangles	tend	to	be	“closed.”		

Table	4	summarizes	how	each	term	is	computed.	
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Table	4:	Relating	hypotheses	to	terms	in	ergm	package	

	 Network	
Concept	

Term	in	ERGM	
packages	

Term	Structure	

H1	 Network	
density	

sum	
𝑔(𝑦) = ;

('()∈*

𝑦'( 	

H2	 Non-zero	tie	
density	

non-zero	
𝑔(𝑦) = ;

('()∈*

𝐼(𝑦'( ≠ 0)	

H3	 Reciprocity	 mutual	
𝑔(𝑦) 	= 	 ;

('()∈*

𝑚𝑖𝑛(𝑦'(, 𝑦(')		

H4	 Transitivity	 transitiveweights	 𝑔(𝑦) 	

= ;
('()∈*

𝑚𝑖𝑛(𝑦'(,𝑚𝑎𝑥5∈6(𝑚𝑖𝑛(𝑦'5, 𝑦5()))	

	

Results	and	Analysis	

While	basic	network	density	can	be	computed	algebraically	simply	by	dividing	the	number	

of	total	possible	ties	by	the	total	summed	value	of	all	ties	to	compute	average	tie	value,	as	

noted	above	it	is	important	to	account	for	the	number	of	meetings	that	a	given	actor	

attends.	We	thus	estimate	the	Sum	parameter	(described	above)	for	each	case	within	a	

GERGM	model	that	includes	a	term	for	the	number	of	observed	meetings	that	a	given	actor	

has	attended.	These	results	are	shown	in	Table	5:	
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Table	5:	Baseline	models	with	density	parameter	and	control	for	attendance		

Case	
(collaboration	level)	

Washington	
(high)	

Missouri	
(medium)	

Georgia		
(low)	

Sum	 -3.62***	(0.04)	 -3.18***	(0.03)	 -3.03***	(0.05)	

Meetings	Attended	 0.12***	(0.002)	 0.19***	(0.001)	 0.28***	(0.01)	
***p	<	0.01,	**p	<	0.05,	*p	<	0.1	

In	each	model,	the	Sum	parameter	functions	in	a	similar	fashion	to	the	intercept	in	a	

regression	model	by	providing	a	baseline	tie	value	estimate	before	factoring	in	other	

parameters.	Parameter	estimated	for	the	Poisson-reference	GERGM	models	shown	in	Table	

5	(and	below	in	Tables	6	and	7)	can	be	interpreted	as	having	an	additive	effect	on	the	

natural	log	of	the	expected	value	of	a	tie	between	any	two	network	organizations.	That	is,	

we	can	exponentiate	a	parameter	(𝑒𝑥𝑝 (𝛽))	to	identify	its	multiplicative	relationship	to	

expected	tie	value.	While	we	provide	more	detailed	interpretations	in	the	remainder	of	this	

section,	two	general	heuristics	hold:	negative	coefficients	serve	to	reduce	the	expected	

value	of	a	tie	(affected	by	the	network	structure	represented	by	the	coefficient)	while	

positive	coefficients	increase	the	expected	tie	value,	and	coefficients	that	are	larger	in	

magnitude	(either	positive	or	negative)	evidence	a	larger	marginal	effect.		

For	instance,	by	exponentiating	the	Sum	parameter	(𝑒𝑥𝑝(−3.62) 	= 0.03)	we	find	that	the	

expected	tie	value	between	any	two	randomly	selected	individuals	in	the	Washington	

relicensing	network	is	0.03.	For	the	Georgia	case,	the	baseline	expected	tie	value	between	

any	two	individuals	is	only	slightly	greater,	0.04	(𝑒𝑥𝑝(−3.18) 	= 0.04).	Missouri	exhibits	a	

slightly	higher	baseline	density,	with	an	expected	tie	value	prior	to	factoring	in	other	

parameters	approximately	0.05	(𝑒𝑥𝑝(−3.03) 	= 0.05).		
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Turning	to	Hypothesis	2,	concerning	the	extent	to	which	network	interactions	are	

concentrated	amongst	a	few	individuals	or	more	widely	dispersed,	we	can	first	visualize	

the	relative	proportions	of	zero-valued	and	non-zero	ties	across	each	network.	Figure	2	

shows	how	the	each	network	compares	in	terms	of	the	proportion	of	all	possible	ties	(𝑁	 ∗

	[𝑁 − 1])	for	each	network	that	are	of	a	given	value.	As	shown	in	Figure	2,	the	Georgia	

network	appears	to	have	a	reduced	prevalence	for	non-zero	ties	relative	to	the	other	

networks,	followed	by	the	Missouri	network	and	then	the	Washington	network.	

	

Figure	2:	Proportion	of	all	possible	ties	observed	at	a	given	value	for	each	network	

To	quantify	this	prevalence,	Table	6	presents	a	model	for	each	case	that	incorporates	the	

Non-zero	statistic,	which	accounts	for	the	extent	to	which	each	network	has	an	excess	of	

dyads	with	a	value	of	zero	(i.e.,	no	tie)	relative	to	the	Poisson	reference	distribution,	net	of	
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the	other	model	terms.	The	intuition	for	this	term	is	that	a	network	can	exhibit	bimodality	

such	that	many	pairs	of	nodes	have	no	tie	(i.e.,	tie	value	equals	zero)	while	other	node	pairs	

have	higher	value	ties;	in	this	case,	simply	fitting	a	Sum	parameter	(which	averages	tie	

value	across	all	potential	ties)	does	not	accurately	represent	what	we	observe	in	the	

network.		

A	negative,	large-magnitude	coefficient	indicates	that	there	are	more	dyads	with	no	

observed	tie	than	would	typically	be	expected	by	the	Poisson	reference	distribution.	In	

other	words,	a	negative	coefficient	for	the	Non-zero	parameter	pulls	down	the	baseline	tie	

value	expectation	to	account	for	a	higher	prevalence	of	ties	with	a	value	of	zero.	For	the	

three	models	in	Table	6,	we	observe	that	all	three	networks	have	a	negative	value	for	the	

Non-zero	coefficient,	indicating	that	all	three	cases	have	a	relatively	strong	prevalence	for	

zero-valued	ties.	

Table	6:	Density	and	non-zero	ties	with	control	for	attendance		

Case	
(collaboration	level)	

Washington	
(high)	

Missouri	
(medium)	

Georgia		
(low)	

Sum	 -1.92***	(0.08)	 -2.05***	(0.13)	 -2.09***	(0.22)	

Non-zero	 -1.67***	(0.09)	 -1.09***	(0.04)	 -0.85***	(0.06)	

Meetings	Attended	 0.083***	(0.003)	 0.15***	(0.002)	 0.22***	(0.007)	

***p	<	0.01,	**p	<	0.05,	*p	<	0.1	

However,	the	Washington	case	has	the	largest	negative	value,	showing	that	of	the	three	

relicensing	processes	it	has	the	lowest	non-zero	tie	density	(i.e.,	more	zero	value	ties).	The	

parameter	value	of	-1.67	is	interpreted	as	reducing	the	expected	value	of	a	tie	between	two	
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randomly	selected	individuals	in	the	network	by	81%	(𝑒𝑥𝑝(−1.67) = 0.19).	The	Georgia	

and	Missouri	relicensing	networks	are	again	are	very	similar	for	this	parameter:	for	the	

Georgia	the	Non-Zero	parameter	reduces	the	expected	value	of	a	tie	by	66%	(𝑒𝑥𝑝(−1.09) =

0.34),	while	for	Missouri	the	Non-Zero	parameter	reduces	the	expected	value	of	a	tie	by	

57%	(𝑒𝑥𝑝(−0.85) = 0.43).		

Lastly,	we	turn	to	Table	6,	which	presents	the	results	for	each	network	model	that	includes	

all	terms	of	interest.	The	high	collaboration	case	(Washington)	exhibits	of	by	far	the	highest	

degree	of	mutuality	between	network	participants.	As	described	above,	the	Mutuality	

parameter	models	the	extent	to	which	the	tie	value	observed	between	nodes	A	and	B	(yAB)	

corresponds	to	the	tie	value	from	B	to	A	(yBA).	In	other	words,	it	models	the	reciprocal	

tendency	of	a	network.	In	the	Washington	network,	for	each	1-unit	increase	in	yij	the	

predicted	value	of	yji	increases	by	458%	(𝑒𝑥𝑝(1.72) 	= 	5.58).		

Table	6:	ERGM	parameter	estimates	for	three	relicensing	networks		

Case	
(collaboration	level)	

Washington	
(high)	

Missouri	
(medium)	

Georgia		
(low)	

Sum	 -2.99***	(0.08)	 -3.72***	(0.13)	 -3.92***	(0.21)	

Non-zero	 -2.44***	(0.09)	 -1.23***	(0.04)	 -1.27***	(0.06)	

Mutuality	 1.72***	(0.09)	 0.11***	(0.04)	 0.76***	(0.07)	

Transitive	Triads	 1.91*	(0.03)	 1.84***	(0.12)	 2.41***	(0.21)	

Meetings	Attended	 0.02***	(0.003)	 0.14***	(0.002)	 0.15***	(0.007)	

***p	<	0.01,	**p	<	0.05,	*p	<	0.1	 	
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This	might	at	first	seem	like	an	outlandish	increase,	but	bear	in	mind	that	the	baseline	

expected	tie	value	between	any	two	randomly	selected	nodes	is	very,	very	low;	that	is,	an	

458%	increase	from	0.1,	for	instance,	is	still	only	0.46.	More	importantly,	the	large	

magnitude	of	this	predicted	increase	reflects	the	informational	gain	for	predicting	yji	that	is	

provided	by	knowing	the	value	of	yij.	If	we	know	that	yij	>	0,		then	it	makes	sense	that	our	

expectation	for	yji	is	markedly	different	than	the	baseline	value	because	nodes	i	and	j	are	

decidedly	not	just	any	two	randomly	selected	nodes	but	rather	nodes	who	already	have	

some	form	of	relationship.	In	any	case,	this	tendency	for	reciprocated	ties	is	lessened	in	the	

Georgia	case,	as	a	one	unit	increase	in	yij	predicts	a	114%	increase	(𝑒𝑥𝑝(0.76) 	= 	2.14)	in	

the	value	of	yji.	The	Mutuality	term	is	even	weaker	in	the	Missouri	case,	as	a	one	unit	

increase	in	yij	predicts	just	a	12%	increase	in	tie	value	(𝑒𝑥𝑝(0.11) 	= 	1.12).		

The	Transitive	Triads	parameter	(the	transitiveweights	statistic	in	the	ergm	package	

(Handcock	et	al.	2014))	can	be	interpreted	as	predicting	how	a	one-unit	increase	in	the	

strongest	two-path	through	which	node	i	already	reaches	node	j	(e.g.,	A	→	B	→	C)	increases	

the	expected	value	of	a	direct	tie	between	nodes	i	and	j		(yij,	e.g.,	A→	C).	This	statistic	is	

smallest	for	the	medium-collaboration	Missouri	case	and	largest	for	the	low-collaboration	

Georgia	case.		For	the	Georgia	relicensing	network,		a	one-unit	increase	in	the	strongest	two	

path	between	two	nodes	(measured	as𝑚𝑎𝑥5∈6(𝑚𝑖𝑛(𝑦'5, 𝑦5()))	increases	expected	value	of	

a	tie	between	nodes	i	and	j	(yij)	by	1013%	(𝑒𝑥𝑝(2.41) 	= 	11.13).	While	we	return	to	this	

finding	in	the	context	of	our	hypotheses	below,	clearly	the	Georgia	relicensing	case	exhibits	

a	very	strong	triadic	closure	tendency.	In	the	Missouri	relicensing,	triad	closure	strength	is	

smaller	than	Georgia,	but	still	highly	significant,	with	a	one-unit	increase	in	the	strongest	
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two	path	between	two	nodes	increasing	the	expected	value	of	a	tie	between	nodes	i	and	j	

(yij)	by	530%	(𝑒𝑥𝑝(1.84) 	= 	6.30).	Finally,	in	the	high-collaboration	Washington	case,	a	

one-unit	increase	in	the	strongest	two	path	between	two	nodes	predicts	a	575%	increase	in	

the	value	of	a	direct	tie	between	said	nodes	(𝑒𝑥𝑝(1.91) 	= 	6.75).	

Each	model	also	includes	a	control	for	the	number	of	meetings	each	individual	attended.	

Since	tie	values	are	based	upon	meeting	attendance	and	participation,	one	would	expect	

that	meeting	attendance	is	positively	associated	with	tie	values	independent	of	any	

underlying	network	drivers.	As	expected,	each	meeting	an	actor	attends	significantly	

increases	the	expected	tie	value	between	that	actor	and	every	other	network	participant,	

although	the	magnitude	of	this	increase	is	small:	5%	(𝑒𝑥𝑝(0.02) 	= 	1.05)	for	Washington,	

16%	(𝑒𝑥𝑝(0.15) 	= 	1.16)	for	Georgia,	and	15%	(𝑒𝑥𝑝(0.14) 	= 	1.15)	for	Missouri.	The	

magnitude	this	parameter	is	small	in	each	model	partly	because	it	models	the	general	

increase	in	expected	tie	value	to	any	network	member;	thus,	while	meeting	attendance	

should	increase	the	expected	value	of	a	network	tie,	it	does	necessarily	provide	fine-tuned	

guidance	about	specific	ties.		

Discussion		

Our	first	hypothesis	(Table	2)	was	that	high	collaboration	processes	will	exhibit	greater	

participation	network	density	than	low	collaboration	processes.	However,	in	the	restricted	

ERGM	model	containing	only	terms	for	density	and	meetings	attended	(Table	5),	the	

highest	collaboration	case	(Washington)	is	shown	to	have	the	lowest	density.	At	first	

glance,	this	runs	counter	to	the	expectation	of	Hypothesis	1	that	high	collaboration	
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processes	will	be	evidenced	by	stronger	network	density	relative	to	low	collaboration	

processes.		

However,	Table	6	(as	well	as	Figure	2)	indicates	that	there	is	more	to	this	story,	as	the	

Washington	network	also	exhibits	the	strongest	proportion	of	zero-valued	ties,	which	

serves	to	pull	down	the	overall	density	estimate.	Hypothesis	2	holds	that	high	collaboration	

processes	will	exhibit	greater	non-zero	tie	density	than	low	collaboration	process	but	not	

differ	in	terms	of	average	tie	value.	This	expectation	is	also	not	borne	out	in	our	results,	as	

the	high	collaboration	process	(Washington)	has	the	lowest	non-zero	tie	density	(i.e.,	a	

higher	proportion	of	dyads	with	no	tie),	followed	by	medium	collaboration	Missouri,	with	

the	low-collaboration	Georgia	having	the	lowest	density	of	non-zero	ties.	In	summary,	the	

case	with	highest	collaboration	exhibits	the	lowest	overall	participation	density	and	has	

many	more	isolated	actors.		

What	might	account	for	the	unexpected	result	that	the	most	collaborative	network	is	also	

the	most	exclusive	of	the	three	nominally	collaborative	relicensing	processes?	Bodin	and	

Crona	(2009)	hypothesize	that	because	network	interactions	represent	potential	

opportunities	for	developing	common	ground	and	initiating	joint	action	(i.e.,	dialogue	and	

discourse	create	more	opportunities	for	collaboration	to	occur),	networks	with	more	ties	

should	be	the	most	collaborative.	However,	others	suggest	that	the	most	successful	

collaborative	ventures	(in	terms	of	reaching	agreement	and	producing	high	quality	

collective	outputs)	are	instances	where	a	small	(relative	to	the	overall	network)	group	of	

actors	collaborate	with	one	another	to	leverage	resources	and	influence	policymaking	

(Lubell	2004a;	Ansell	and	Gash	2008).	As	discussed	above,	inclusion	of	a	greater	number	of	
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network	actors	increases	the	time	and	effort	required	to	reach	decisions	and	take	action	

(Wondolleck	and	Yaffee	2003;	Margerum	2011;	Imperial	2005)	and	raises	external	

decision	costs	(Feiock	2013).	Thus,	high-functioning	collaborative	decision-making	forums	

might	not	be	the	most	inclusive	in	terms	of	incorporating	all	network	actors	into	decision-

making,	but	rather	institutions	where	a	subset	of	key	network	actors	are	heavily	involved	

(i.e.,	stakeholders	who	offer	particularly	relevant	information,	hold	key	resources,	or	are	

otherwise	critical	for	achieving	successful	outcomes).		

Put	in	terms	of	our	empirical	findings,	it	is	possible	that	networks	having	slightly	lesser	

overall	density,	and	a	greater	proportion	of	dyads	having	no	tie	(as	observed	in	the	

Washington	case),	evidence	this	phenomenon	at	work,	revealing	relicensing	networks	that	

are	sufficiently	collaborative	to	leverage	resources	and	get	things	done	but	not	so	much	

that	they	invite	disagreement	or	delay.4	This	does	not	mean	that	density	necessarily	

hinders	collaboration,	but	rather	indicates	that	network	density	is	insufficient	to	

distinguish	amongst	processes	or	decision	forums	that	are	all	nominally	“collaborative.”		

This	interpretation	is	further	supported	by	the	results	of	the	Mutuality	parameter	used	to	

test	Hypothesis	3	(that	high-collaboration	processes	will	exhibit	a	stronger	tendency	for	

reciprocal	ties).	Indeed,	across	the	three	cases	the	Washington	network	has	the	greatest	

degree	of	mutuality	by	far	(although	mutuality	is	also	higher	in	low-collaboration	Georgia	

than	in	medium-collaboration	Missouri).	Even	though	relicensing	process	participants	

																																																								
4	A	less	theoretically	interesting	possibility	is	that	the	unexpected	lack	of	ties	between	many	of	the	
participants	in	high-collaboration	Washington	reflects	the	differences	in	how	closely	the	meeting	minutes	
identified	each	speaker	across	the	three	cases.	Washington	had	the	least	detailed	minutes	of	the	three	cases,	
so	the	observed	data	likely	undercount	tie	values	relative	to	the	other	cases.	
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come	from	many	different	organizations,	the	strength	of	reciprocal	ties	in	the	Washington	

case	evidences	that	many	participants	engaged	in	repeated,	two-way	dialogue	with	one-

another.	Such	interactions	can	help	create	strong	within-group	connections	that	foster	

shared	understanding	and	enable	joint	action	(Emerson	and	Nabatchi	2015a).			

The	final	structural	attribute,	transitivity,	is	shown	to	be	strongest	in	the	network	with	the	

lowest	observed	collaboration	(Georgia).	This	supports	the	expectation	of	Hypothesis	4,	

that	high-collaboration	processes	will	exhibit	lower	triad	closure	bias.	As	to	why	this	

occurred,	recall	that	we	measure	a	tie	as	a	unidirectional	link	between	a	meeting	attendee	

who	gave	a	presentation	or	participated	in	a	discussion	to	all	other	attendees.	Thus,	triadic	

structures	such	as	that	shown	in	Figure	1	reveal	a	hierarchical	structure	in	which	some	

participants	dominate	dialogue	and	others	are	passive	listeners.	The	prevalence	of	

transitive	triads	indicates	that	meetings	were	structured	more	hierarchically	in	Georgia	

than	the	other	two	cases.	This	stands	in	contrast	to	the	high	degree	of	mutual	deliberation	

in	the	Washington	case,	which	perhaps	evidences	a	more	equal	field	of	participants	as	

attendees	who	are	speaking	are	also	receiving	information	from	others.		

A	final	observation	is	of	the	similarity	in	network	structure	between	the	low	collaboration	

case	and	the	medium	collaboration	case,	despite	seemingly	different	levels	of	interaction	

arising	from	the	initial	document	analysis.	In	low-collaboration	Georgia,	there	was	very	

little	interaction	between	participants	relative	to	the	other	two	cases.	The	utility	held	only	

eleven	public	meetings.	While	the	meetings	were	attended	by	a	diverse	network	of	

organizations,	the	meetings	were	dominated	by	formal	presentations	by	the	utility	and	a	

few	other	stakeholders.	Thus,	there	was	very	little	authentic	deliberation	(Innes	and	
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Booher	2010)	between	participants.	In	contrast,	the	medium-collaboration	Missouri	

process	looked	a	lot	more	like	collaborative	engagement.	The	utility	hired	a	well-known	

facilitator	to	design	the	process,	and	participants	used	deliberation	and	interest-based	

negotiation	to	jointly	define	problems	and	develop	technical	studies.	However,	when	the	

participants	began	to	develop	actual	management	recommendations,	participants	reverted	

to	positional	negotiation	and	the	final	recommendations	reflected	only	a	subset	of	

stakeholder	interests.	(See	Ulibarri	2015b	for	more	details	on	each	process.)	Thus,	the	

paper	trail	for	these	two	processes	look	very	different,	with	one	case	having	minimal	

consultation	and	the	other	with	more	extensive	engagement.	These	differences	were	not	

picked	up	by	the	network	analysis;	the	network	results	instead	more	closely	reflect	the	

overall	level	of	collaboration	(which	includes	very	low	levels	of	trust	from	the	Missouri	

survey,	drawing	the	final	ranking	downward).	This	suggests	that	the	network	analysis	was	

effective	in	capturing	the	overall	level	of	collaboration,	but	may	not	mirror	individual	

dynamics	as	effectively.	

Conclusion	

In	this	study,	we	asked	whether	network	structure	metrics	reflect	the	quality	and	extent	of	

collaborative	decision-making.	Using	meeting	attendance	and	participation	records	from	

three	FERC	hydropower	relicensing	processes,	we	tested	metrics	for	network	density	and	

network	cohesion,	then	related	them	to	the	underlying	level	of	collaboration	in	each	case.	

Our	findings	serve	to	demonstrate	how	patterns	of	individual-level	interaction	relate	to	the	

level	of	collaboration	on	a	more	general	basis.	Specifically,	we	observe	more	concentrated	

interactions,	more	reciprocated	ties,	and	lesser	hierarchical	tendency	in	the	high	
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collaboration	case,	and	higher	overall	involvement	but	with	fewer	two-way	patterns	of	

communication	in	the	low	collaboration	case.	These	results	speak	to	the	complexity	of	

collaborative	governance	in	policy	networks,	in	that	inclusion	and	widespread	involvement	

(often	touted	as	theoretical	advantages	of	collaborative	governance)	must	be	balanced	

against	time	and	capacity	constraints	and	the	need	to	reach	agreements.		

One	intent	of	this	analysis	was	to	provide	network-based	metrics	of	collaborative	dynamics	

that	can	be	scaled	up	or	used	to	compare	across	cases	more	readily	than	the	more	

qualitative	or	case-specific	measures	in	the	literature.	In	our	previous	analysis,	principled	

engagement	was	found	to	be	the	dynamic	that	most	strongly	influenced	the	content	and	

quality	of	hydropower	licenses	(Ulibarri	2015a;	Ulibarri	2015b);	connecting	these	findings	

to	network	metrics	reveals	that	triadic	closure	bias	and	mutuality	potentially	represent	

useful	network-based	measures	of	principled	engagement	for	analyzing	collaboration	and	

its	outcomes.		

This	study	was	subject	to	methodological	limitations	that	provide	fruitful	avenues	for	

future	research.	First,	as	an	exploratory	study,	we	assessed	only	three	cases	by	identifying	

trends	among	our	data.	While	measuring	collaboration	and	collecting	network	ties	for	a	

large	number	of	cases	would	require	substantial	manpower,	using	a	larger	sample	size	

would	allow	for	trends	to	be	ascertained	with	more	statistical	certainty.	Second,	examining	

the	evolution	of	collaborative	governance	networks	over	time	is	a	critical	way	to	build	

upon	current	work.	Neither	collaboration	nor	network	structures	are	static	phenomena,	

but	vary	over	the	course	of	a	decision-making	process.	With	frequent	meetings	occurring	

over	multiple	years,	participants	have	the	opportunity	to	get	to	know	one	another	very	
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well,	learn	to	cooperate,	and	possibly	even	adopt	one	another’s	beliefs	(Leach	et	al.	2013;	

Lubell	2004b).	The	network	and	associated	collaborative	actions	might	start	by	building	

connections	across	relatively	disparate	actors	but	evolve	toward	close-knit	in-group	

bonding.		

Additionally,	recent	scholarship	speaks	to	how	the	plethora	of	decision-forums	within	

modern	policy	subsystems	requires	network	actors	to	allocate	their	time	towards	forums	

where	they	are	best	able	to	exert	their	influence	and	garner	benefits	(Lubell	2013;	Lubell,	

Robins,	and	Wang	2014;	Lubell,	Henry,	and	McCoy	2010).	The	complexity	incentivizes	

affiliation	with	forums	that	contain	like-minded	actors	(Henry,	Lubell,	and	McCoy	2011;	

Gerber,	Henry,	and	Lubell	2013).	Given	this,	it	is	possible	that	peripheral	actors	will	drop	

out	of	collaborative	decision	forums	by	virtue	of	their	peripheral	status,	increasing	network	

concentration	not	through	increased	interaction	but	by	reducing	the	number	of	

participants.			

Thus,	adding	a	temporal	component,	both	in	assessing	how	collaboration	changes	over	

time	(e.g.,	via	process	tracing)	and	how	the	networks	change	over	time	(e.g.,	via	temporal	

ERGMs),	offers	to	deepen	understanding	of	how	networks	and	collaboration	interrelate.	In	

particular,	if	they	evolve	at	different	rates,	it	may	suggest	that	one	is	driving	changes	in	the	

other,	an	important	finding	for	process	designers	seeking	to	encourage	effective	

collaboration.	Recent	theoretical	(Emerson	and	Nabatchi	2015a)	and	methodological	

(Ingold	and	Leifeld	2016;	Leifeld	et	al.	2015)	contributions	provide	a	roadmap	for	

longitudinal	analysis	of	collaborative	governance	and	networks	going	forward.		
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APPENDIX	A:	Model	Specification	and	Goodness-of-Fit	

Model	Specification	

A	GERGM	assumes	that	the	observed	network	(i.e.,	pattern	of	ties)	represents	a	sample	

from	a	hypothetical	distribution	of	possible	network	realizations.	To	draw	inferences	about	

the	underlying	network	phenomena,	a	GERGM	compares	the	observed	network	to	the	

distribution	of	possible	network	graph	configurations,	with	each	hypothetical	graph	

weighted	based	upon	similarity	to	the	observed	configuration.	Comparing	the	observed	

network	to	the	distribution	of	possible	networks	provides	a	probabilistic	assessment	of	

whether	a	particular	driver	is	more	or	less	prevalent	in	the	observed	network	(by	showing	

whether	a	given	structure	occurs	more	or	less	in	the	observed	network	than	if	ties	are	

distributed	at	random)	(Lusher,	Koskinen,	and	Robins	2013,	Kolaczyk	2009).		

For	non-trivial	networks,	a	vast	number	of	possible	network	configurations	exist	and	it	is	

infeasible	to	analyze	all	possible	graphs.	Thus,	GERGMs	use	a	Markov	chain	Monte	Carlo	

(MCMC)	maximum	likelihood	estimation	technique	that	samples	from	the	distribution	of	

possible	network	configurations.	Sampling	is	weighted	based	upon	similarity	to	the	
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observed	network	in	terms	of	descriptive	characteristics	such	as	density	and	structural	

attributes	such	as	the	number	of	triangular-patterned	ties	in	order	to	generate	a	

distribution	of	network	graphs	that	are	a	suitable	basis	for	comparison.		

	

	

Basically,	the	MCMC	procedure	iteratively	proposes	a	single	tie	change	to	the	network	and	

then	compares	the	likelihood	of	the	pre-change	and	post-change	network	graphs.	Every	

time	the	proposed	change	increases	the	likelihood	of	the	simulated	network	graph,	the	

MCMC	process	makes	the	proposed	change	and	then	repeats	the	same	steps.	When	the	

proposed	change	decreases	the	likelihood	(shown	below)	of	the	network	graph,	the	MCMC	

process	only	elects	to	make	the	proposed	change	a	fixed	percentage	of	the	time	(e.g.,	50%)	

(Lusher,	Koskinen,	and	Robins	2013).	This	iterative	procedure	searches	the	parameter	

space	to	(hopefully)	converge	on	a	stationary	distribution	of	network	graphs	that	resemble	

the	observed	network.	

Social	networks	are	often	sparse,	in	that	actors	who	interact	often	interact	multiple	times	

and	many	other	actors	have	zero	ties.	This	means	that	the	dyad-wise	tie	distribution	is	

zero-inflated	relative	to	a	standard	Poisson	distribution	(Krivitsky	and	Butts	2013b).	

Krivitsky	(2012a)	specifies	the	likelihood	function	for	a	zero-modified	Poisson-reference	

GERGM	as:	

𝑃𝑟O;Q,R,S(𝑌 = 𝑦) ∝ ∏(',()∈* 𝑒𝑥𝑝(𝜃X𝑦'( + 𝜃Z1[\]^_)/𝑦'(!	 	 	 (Equation	A1)	
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with	the	reference	distribution	represented	by	h(y):		

ℎ(𝑦) 	= 	1/∏(',()∈* 𝑦'(!	 	 	 	 	 	 	 (Equation	A2)	

Equation	A1	specifies	the	model	sans	any	additional	model	terms	as	the	observed	baseline	

distribution	of	network	ties.	Additional	terms	are	then	added	to	the	model	to	account	for	

endogenous	structural	characteristics	and	exogenous	attributes	of	participating	

organizations.		

Model	Goodness-of-Fit	

When	fitting	a	GERGM,	it	is	important	to	ensure	that	the	MCMC	estimation	process	does	not	

exhibit	degeneracy;	a	degenerate	MCMC	cascades	to	a	completely	full	or	completely	empty	

model	(i.e.,	all	high	value	ties	or	all	no-value	ties)	and	weights	these	unrealistic	network	

graphs	too	highly	(Lusher,	Koskinen,	and	Robins	2013;	Kolaczyk	2009;	Handcock	et	al.	

2003).		

Figures	A1,	A2,	and	A3	show	traceplots	for	each	parameter	across	iterations	of	each	MCMC	

chain	to	demonstrate	that	the	the	model	is	mixing	sufficiently	and	not	straying	outside	of	

the	parameter	space	(Krivitsky	and	Butts	2013b).5	Each	model	in	this	paper	is	fit	via	a	four	

parallel	sampling	chains.	Every	chain	discards	the	first	10,000	networks	to	ensure	that	

samples	used	for	estimation	purposes	are	drawn	from	a	stable	distribution	(Lusher,	

Koskinen,	and	Robins	2013).	After	this	“burn	in”	period,	each	chain	takes	160,000	samples	

																																																								
5	Note	that	the	goodness-of-fit	plots	shown	in	this	appendix	refer	to	the	unrestricted	models	presented	in	
Table	7;	we	also	performed	goodness-of-fit	analysis	for	the	restricted	models	shown	in	Table	5	and	6.	Each	
model	mixes	adequately,	exhibits	consistent,	unimodal	estimation	within	and	across	MCMC	chains,	and	
faithfully	replicated	the	structural	characteristics	of	the	observed	networks.	Because	the	unrestricted	models	
in	Table	7	are	more	difficult	to	fit,	we	focus	on	their	goodness-of-fit	in	this	appendix.		
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(with	each	sample	being	a	different	possible	network	graph).	So	that	all	draws	are	not	

taken	from	the	same	small	area,	each	chain	is	thinned	by	discarding	1000	individual	

perturbations	between	each	sample.	Figures	A1,	A2,	and	A3	respectively	thus	trace	the	

maximum	likelihood	parameter	estimates	for	each	MCMC	chain	and	parameter	in	the	

corresponding	model.	The	seemingly	random,	back-and-forth	movement	of	each	chain	

demonstrates	that	the	model	is	searching	throughout	the	parameter	space,	and	the	lack	of	

an	upward	or	downward	trend	shows	that	each	model	does	not	become	degenerate	and	

trend	towards	a	completely	empty	or	completely	full	network.			

	
Figure	A1:	Tracing	MCMC	parameter	estimates	for	Washington	network	model	
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Figure	A2:	Tracing	MCMC	parameter	estimates	for	Missouri	network	model	

	
Figure	A3:	Tracing	MCMC	parameter	estimates	for	Georgia	network	model	
	

Along	with	mixing	adequately	and	sufficiently	searching	the	parameter	space,	it	is	also	



	
Ulibarri	&	Scott	2017	

Linking	Network	Structure	to	Collaborative	Governance	
https://doi.org/10.1093/jopart/muw041	

46	

important	that	the	parameter	estimates	for	each	MCMC	chain	converge	and	that	the	

distribution	of	estimates	generated	by	each	chain	are	unimodal	and	approximately	

normally	distributed.	Figures	A4-6	show	density	plots	for	each	model	parameter	for	

Washington,	Georgia,	and	Missouri,	respectively.	

	

Figure	A4:	Density	of	MCMC	parameter	estimates	for	Washington	network	model	

One	advantage	of	the	parallel	modeling	approach	we	use,	in	which	each	model	uses	four	

separate	MCMC	chains,	is	that	comparing	chain-specific	distributions	demonstrates	model	

robustness.	Figures	A4,	A5,	and	A6	demonstrate	that	the	four	parallel	chains	converge	

around	consistent	estimates	for	each	model	parameter.	This	is	an	important	improvement	

upon	many	published	ERGMs	that	do	not	use	parallel	processing.	While	serial	processing	

still	allows	the	analyst	to	establish	whether	the	single	MCMC	chain	produces	a	unimodal	

distribution,	comparing	the	results	of	several	chains	fit	in	parallel	shows	the	extent	to	
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which	model	results	are	consistent	and	replicable.	

	

Figure	A5:	Density	of	MCMC	parameter	estimates	for	Missouri	network	model	
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Figure	A6:	Density	of	MCMC	parameter	estimates	for	Georgia	network	model	

Finally,	in	the	discussion	of	model	goodness-of-fit	above	in	the	main	body	of	the	

manuscript,	we	noted	that	GERGM	inference	is	based	upon	comparing	the	observed	

network	to	the	distribution	of	simulated	networks	generated	by	the	model.	That	is,	if	we	

simulate	a	large	number	of	networks	based	upon	estimated	model	parameters,	we	should	

expect	that	the	simulated	networks	generally	resemble	the	observed	network.	To	test	this,	

we	simulate	100,000	hypothetical	networks	based	upon	each	best-fit	model	presented	

above,	and	compare	the	distribution	of	network	statistics	found	in	the	simulated	networks	

to	the	observed	values	in	Washington,	Georgia,	and	Missouri.		

Figures	A7,	A8,	and	A9	plot	the	density	of	simulated	values	and	show	where	the	observed	

statistics	fall	within	these	distributions	using	a	dashed	line.	In	each	case	the	observed	

statistic	is	near	the	middle	of	the	simulated	values	and	the	simulated	values	appear	to	be	
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approximately	normally	distributed	around	the	observed	statistics.		The	unrestricted	

Washington	model	(Figure	A7)	is	the	poorest	fit	in	this	regard,	as	the	model	struggles	to	

simulate	networks	that	closely	resemble	the	observed	network.	This	is	not	the	case	for	the	

restricted	models	with	only	Sum,	Non-zero,	and	Meetings	Attended	parameters	(shown	in	

Tables	5	and	6).		

The	conundrum	here	is	that	dropping	model	terms	to	increase	the	goodness-of-fit	with	

regards	to	simulation	makes	comparison	to	other	network	models	more	problematic,	since	

adding	or	subtracting	parameters	changes	each	estimate	(see	Tables	5,	6,	and	7).	Since	our	

analysis	focuses	on	comparison	across	the	three	cases,	this	issue	is	paramount.	Moreover,	

given	that:	(1)	the	goodness-of-fit	metrics	presented	above	(Figures	A1	and	A4)	speak	to	

adequate	MCMC	mixing	and	consistency	in	parameter	estimation	within	and	across	MCMC	

chains;	and	(2)	the	worst-fitting	parameter	in	Figure	A7	is	the	Meetings	Attending	

parameter,	which	is	not	of	substantive	importance	to	the	results	in	any	case,	we	believe	

that	it	is	still	appropriate	to	make	comparisons	using	the	three	models.		
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Figure	A7:	Distribution	of	simulated	network	statistics	based	upon	Washington	model	
	

	
Figure	A8:	Distribution	of	simulated	network	statistics	based	upon	Missouri	model	
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Figure	A9:	Distribution	of	simulated	network	statistics	based	upon	Georgia	model	




